Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

立体定向注射病毒载体的基因操作在小鼠脊髓条件

Published: March 18, 2013 doi: 10.3791/50313

Summary

病毒载体可以进行有针对性的基因操作。我们提出了一个条件性基因的表达或消融方法在小鼠脊髓,采用立体的病毒载体注射到脊髓背角,初级躯体感觉传入中枢神经系统的神经元之间的突触接触的一个突出的部位。

Abstract

实质内注射病毒载体使在不同人群的中枢神经系统的神经元或特定区域的条件的基因操作。我们展示了一个立体的注射技术,可以使靶基因的表达或沉默的小鼠脊髓背角。手术是短暂的。它需要一个单一的椎椎板切除术,提供快速恢复脊柱的动物和不受影响的活力。在低速和使用微量的斜角玻璃套管控喷射的小矢量悬浮液体积减少组织损伤。局部免疫反应的矢量取决于采用的病毒的内在特性;根据我们的经验,这是轻微和短暂的,使用时的重组腺相关病毒。如增强型绿色荧光蛋白报告基因的方便的载体,空间分布监测和疗效和蜂窝指定的转染ficity。

Introduction

有条件的基因操作在小鼠的先进技术,使多方面的探索中枢神经系统的的突触途径和功能连接方法。转基因可能是受小分子效应如强力霉素,四环素控制的反式激活,它可以被设计为充当一个阻遏或激活基因转录,或他莫昔芬承认的雌激素受体​​1的配体结合域的突变作用于。通常是不可逆的转基因修饰的实现由脱氧核糖核酸(DNA)的重组酶。华创(的原因重组)和FLP(flippase重组酶)催化loxP位(轨迹,穿越x,P1)或首次登记税(flippase识别目标)的网站,分别为1的DNA片段,这些片段两侧切除,反转或易位。应用范围包括基因的激活或沉默和诱导型核糖核酸(RNA)干扰3。大型诱变项目在北美( http://www.norcomm.org/index.htm )和欧洲( http://www.knockoutmouse.org/about/eucomm )的小鼠胚胎干细胞克隆库有条件的靶基因和陷阱,最终将覆盖整个小鼠基因组中。鼠标线膨胀的数目,反映根据特定的神经元的选择性基因操作( http://nagy.mshri.on.ca/cre_new/index某一特定人群的启动子或基因座的DNA的重组酶,可以划线,从这些克隆产生的小鼠PHP )。

4。高容量(无胆)腺病毒,腺相关病毒,单纯疱疹病毒和慢病毒常​​用嗜神经载体。选择合适的病毒用于研究的问题是实验设计的一个重要组成部分。的转基因的大小,送货路线,特异性感染的神经元,而不是神经胶质细胞,感染的疗效,炎性和毒性副作用需要考虑4。

在这里,我们描述了立体的病毒载体注射到脊髓背角,采用的技术,我们的条件在我们的研究对疼痛的神经生物学基因调控。背角接收传入的初级躯体感觉神经元的输入,包括伤害性神经元。当地的interneurons处理信息,然后投射神经元的传递从背角的大脑5。我们展示了一种嗜神经的重组腺相关病毒(rAAV),组成性激活的巨细胞病毒启动子表达增强型绿色荧光蛋白(EGFP)下背角神经元在脊髓节段L4感染。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

描述的外科手术已经批准了哥伦比亚大学实验动物护理和使用委员会(IACUC)。

1。设备和病毒颗粒悬浮液的制备

  1. 清洁和消毒的设备,消毒的外科手术器械和V形缺口,将用于修复椎骨L1尖峰。
  2. 拉和锥玻璃吸管。我们使用的移液管的前端的直径为40μm,并在以20°的角度倾斜的。消毒的玻璃吸管。
  3. 设置的立体定位框架,安装到操纵器上的微量喷射器,喷射器连接到控制器。
  4. 微量使用压缩装配套件安装的玻璃吸管。
  5. 将柱塞微量矿物油填补了注射器。油红O(1 - (2,5 - 二甲基-4-(2,5-dimethylphenylazo)苯基偶氮)-2 - 萘酚)可被加入到矿物油,以增加它的visibility。重新将活塞推给小费的方式。小心避免气泡。
  6. 准备病毒颗粒悬浮在生物安全柜。在冰上解冻冷冻病毒,只是在使用前,用无菌磷酸盐缓冲盐水所需的颗粒浓度稀释。
  7. 将微量注射器持有人。
  8. 吸取5μl病毒悬液到一个小塑料片, 封口膜。降低玻璃吸液管头下降到拉活塞,填补了微量。创建一个小气泡,在移液管尖,以防止它从堵塞。

2。椎板切除术

  1. 准备手术部位用消毒液擦拭工作台和加热垫。
  2. 麻醉鼠标。我们使用吸入异氟醚麻醉诱导过程中,在维修过程中的2%-3%)(3%。
  3. 将每只眼睛以保护眼睛免受干燥过程中的润滑剂操作。
  4. 剃须从下背部的鼠标的颈部和皮草消毒皮肤与交替的局部消毒剂如洗必泰或聚维酮碘和70%乙醇的湿巾。隔离无菌制备的网站与手术被单和渗透布比卡因(0.25%,生理盐水稀释1:10)的切口部位。
  5. 在尾端的肋骨沿中线(2-3厘米),切开皮肤,分离筋膜覆盖脊柱。
  6. 由于脊髓停止生长早期发育过程中的比脊柱,脊髓节段L4位于下方的第一腰椎(L1)。 L1椎体位于骶管的脊椎骨持有的最后一对肋骨。识别和消除小脊髓肌肉和韧带连接到其背表面暴露椎体L1。
  7. 轻轻抬起,保持脊椎的L1与一个ADSON的钳。使用专用的椎板钳,删除背portioN的椎体(脊椎和叶片)和暴露脊髓。避免损伤脊髓。
  8. 转移鼠标在立体定位框架到加热板。随后的操作过程中,监测温度的鼠标。

3。注射

  1. 修复椎体L1与V型缺口的峰值。尖峰必须稳定,使脊柱的椎体呼吸过程中不动。
  2. 带来的微量近点儿,让吸头以上椎板网站。降低活塞,直到你看到病毒悬液退出吸液管。用无菌棉棒取出液滴。
  3. 移液管尖头定位在最延髓部的暴露的脊髓。中心后正中沟以上的吸管,然后将尖端500μm的横向。降低头电源线和刺破硬脑膜表面,如果您使用的是未斜切的玻璃吸管,用一个斜面钢套管穿刺的d市区重建局。放下的前端的玻璃吸移管300微米到脊髓。
  4. 注射1微升病毒悬浮液,在200升/分钟的速率。
  5. 在注射完毕,等待至少2分钟,才慢慢地缩回吸管。
  6. 重复步骤3.3至3.5,最的尾部的露出的脊髓的病毒载体在脊髓节段L4实现完全分布。两个注射部位位于延髓和尾侧的L4段,以避免在目标区域中的组织损伤的。

4。伤口愈合

  1. 发布椎体L1的V型缺口夹,删除鼠标的立体框架。
  2. 缝合筋膜与5.0薇乔。封闭的筋膜椎板网站提供保障。
  3. 关闭肌肤的尼龙手术缝合或钉书钉。

5。术后护理

  1. 鼠标传输到恢复笼被褥与柔软,nonparticular的。将它放在吨他一边舒适的呼吸。监控动物,直到它是完全清醒的,能行走,并开始饮用。
  2. 我们提供术后镇痛的72小时:每日皮下注射的卡洛芬(5.0毫克/公斤)。
  3. 监测术后第3天恢复日常检查,然后隔日或每周3天,直到试验完成。
  4. 去除皮肤缝合或钉书钉,手术后7〜10天,当伤口完全愈合。
  5. 实验完成后,安乐死动物。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

成功转染产生强大的基因的表达,不惜背角对侧,腹角和背根神经节神经元的注入背角( 图1)。

图1
图1。 (A)表达的荧光记者左背角L4脊髓,两个星期后的rAAV-EGFP的立体定向注射(血清型AAV2 / 8,9个基因组拷贝/ EGFP(绿色) 转染背角神经元。微升)。神经元进行免疫染色的神经元细胞核的蛋白(NEUN,红色)。箭头点地散落转染的神经胶质细胞在脊髓背柱。比例尺为150μm。(B)内侧背角神经元中大约80%的感染。比例尺,20微米。用于稀释1:2,0反对NEUN(EMD Millipore公司)的单克隆抗体00的免疫组化。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

立体定向的载体注射可针对脊髓神经元的应用程序,如神经网络映射的基础上跨突触传播的病毒6,7或optogenetic解剖,轴突引导再生过程中从伤病中9,10,或基因治疗用于预防或治疗神经退行性疾病11, 12。病毒载体用于基因操作的脊髓研究躯体感觉,运动和植物神经途径9,10,13-15。鼠标是最广泛使用的模式生物的研究涉及立体病毒载体注射到大脑或脊髓,但该技术已经在其他物种,包括非人灵长类动物16。

立体定向载体注射到小鼠脊髓中是安全的,这里所描述的外科手术需要一个单一的椎板切除术,让动物在注射部位没有不稳定性恢复TY在其脊柱的运动。注射和插管除去缓慢是在10分钟之内完成,包括皮肤准备和伤口闭合的整个过程持续约40分钟。我们提供卡洛芬,非甾体类消炎止痛药的72小时的手术后麻醉。

为了尽量减少组织创伤,我们采用拉出玻璃套管的前端直径为40μm。插入一个尖锐的斜面套管尖端简化,证明脊髓中的微管磨床的投资。研磨机的使用还允许在每个实验中保持一致的斜面角,减少喷射的结果的变化。我们更喜欢自动化控制的注射速度超过手动分注17背角中的病毒颗粒的悬浮液中的均匀分布,并降低的风险的喷射错误。同样关键的是一个缓慢的提取套管,应开始2-5分钟后,完成injecti上绘制的病毒悬浮液,以避免备份和造成的extraspinal的泄漏。

椎管内转染的程度和分布取决于注入粒子的病毒载体,如血清型和感染的疗效的剂量和内在属性。最优的粒子稀释,凭经验确定每种病毒和血清型,不同批次的同一种病毒可能会有所不同。根据目标人群的神经元18,19感染和DNA转导的功效也会有所不同。 AAV实现转基因在神经元无致病性和最小的免疫副作用20。根据我们的经验,感染背角神经元内完成1-2周和稳定。我们观察到在注射部​​位轻微的小胶质细胞反应,但这些在一周内解决。

我们建议比较不同血清型的载体,如EGFP表达报告基因,对eval审视你们转染率,确定喷射之间的时间间隔和稳定转染,并建立感染是否是有限的神经细胞的。将取决于细胞嗜性的载体,转染的基因和其启动子特异性。体感通路的调查研究也应该研究一个潜在的报告基因的表达,这可能导致感染的中央终端在脊髓背角神经元或污染的脑脊液19的背根神经节神经元。

在美国,使用病毒载体的基因操作由NIH研究指南涉及重组DNA的分子( http://oba.od.nih.gov/rdna/nih_guidelines_oba.html )的调节。这些准则规定要求调查员培训,个人防护,病毒载体遏制,decontaminatioN,处置受污染的材料,如用过的注射器和导管,和动物在注射后的住房。调查人员应与当地机构监督IACUC或同等机构确定的规则和规例适用于他们的研究工作。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者宣称,他们没有竞争的金融利益。

Acknowledgments

我们感谢Bakhos A. Tannous,博士为我们提供的rAAV-EGFP载体,载体的开发和生产在马萨诸塞州的查尔斯顿,马萨诸塞州总医院,神经科学中心的主任,约翰·王海提供技术援助。这项工作是支持的补助R01 NS050408(JS)由美国国家神经疾病与中风研究所。

Materials

Name Company Catalog Number Comments
Spinal base plate David Kopf Instruments 912
Small animal stereotaxic instrument David Kopf Instruments 900
Mouse gas anesthesia head holder David Kopf Instruments 923-B
Adjustable base mounts David Kopf Instruments 982
V notch spikes David Kopf Instruments 987
Small animal temperature control system David Kopf Instruments TCAT-2LV
Adson forceps Fine Science Tools 11006-12
Laminectomy forceps Fine Science Tools 11223-20
UltraMicroPump (one) with SYS-Micro4 Controller World Precision Instruments UMP3-1
Microsyringe, 65RN Hamilton 7633-01
RN compression fitting, 1 mm Hamilton 55750-01
Borosilicate glass capillaries World Precision Instruments 1B100F-4
Microgrinder Narishige EG-44

DOWNLOAD MATERIALS LIST

References

  1. Lewandoski, M. Conditional control of gene expression in the mouse. Nature Reviews Genetics. 2, 743-755 (2001).
  2. Couto, L. B., High, K. A. Viral vector-mediated RNA interference. Curr. Opin. Pharmacol. 10, 534-542 (2010).
  3. Luo, L., Callaway, E. M., Svoboda, K. Genetic dissection of neural circuits. Neuron. 57, 634-660 (2008).
  4. Davidson, B. L., Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Reviews Neuroscience. 4, 353-364 (2003).
  5. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews Neuroscience. 11, 823-836 (2010).
  6. Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M., Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proceedings of the National Academy of Sciences of the United States of America. 107, 21848-21853 (2010).
  7. Lo, L., Anderson, D. J. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron. 72, 938-950 (2011).
  8. Zhao, S., et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods. 8, 745-752 (2011).
  9. Tang, X. Q., Heron, P., Mashburn, C., Smith, G. M. Targeting sensory axon regeneration in adult spinal cord. J. Neurosci. 27, 6068-6078 (2007).
  10. Cameron, A. A., Smith, G. M., Randall, D. C., Brown, D. R., Rabchevsky, A. G. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J. Neurosci. 26, 2923-2932 (2006).
  11. Passini, M. A., et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. The Journal of Clinical Investigation. 120, 1253-1264 (2010).
  12. Lutz, C. M., et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. The Journal of Clinical Investigation. 121, 3029-3041 (2011).
  13. Chen, S. L., et al. dsAAV type 2-mediated gene transfer of MORS196A-EGFP into spinal cord as a pain management paradigm. Proc. Natl. Acad. Sci. U.S.A. 104, 20096-20101 (2007).
  14. South, S. M., et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J. Neurosci. 23, 5031-5040 (2003).
  15. Tappe, A., et al. Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat. Med. 12, 677-681 (2006).
  16. Colle, M. A., et al. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Human Molecular Genetics. 19, 147-158 (2010).
  17. Carbajal, K. S., Weinger, J. G., Whitman, L. M., Schaumburg, C. S., Lane, T. E. Surgical Transplantation of Mouse Neural Stem Cells into the Spinal Cords of Mice Infected with Neurotropic Mouse Hepatitis Virus. J. Vis. Exp. (53), e2834 (2011).
  18. Snyder, B. R., et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum. Gene Ther. 22, 1129-1135 (2011).
  19. Towne, C., Pertin, M., Beggah, A. T., Aebischer, P., Decosterd, I. Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol. Pain. 5, 52 (2009).
  20. Kaplitt, M. G., et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian. 8, 148-154 (1994).

Tags

神经科学,第73条,神经生物学,遗传学,生物医学工程,生物工程,解剖学,生理学,病毒学,分子生物学,细胞生物学,脊髓,立体定位技术,遗传载体,小鼠脊髓背角,立体定位注射,病毒载体,转基因,基因的表达,转染,神经细胞,绿色荧光蛋白,免疫,动物模型
立体定向注射病毒载体的基因操作在小鼠脊髓条件
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Inquimbert, P., Moll, M., Kohno, T., More

Inquimbert, P., Moll, M., Kohno, T., Scholz, J. Stereotaxic Injection of a Viral Vector for Conditional Gene Manipulation in the Mouse Spinal Cord. J. Vis. Exp. (73), e50313, doi:10.3791/50313 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter