Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

蛋白质智慧:一个工作台 Published: July 25, 2013 doi: 10.3791/50476

Abstract

从头蛋白质设计的目的是要找到的氨基酸序列,将折叠成与特定的属性,比如,相对于天然序列的结合亲和力,激动剂或拮抗剂的行为,或稳定性的改善所希望的3维结构。蛋白质设计在于在目前的进展的药物设计和发现的中心。蛋白质设计不仅提供预测潜在的有用的药物靶标,但它也增强了我们的了解蛋白质折叠的过程中,蛋白质 - 蛋白质相互作用。定向进化的实验方法,如蛋白质设计的成功。然而,这样的方法是受限制由有限序列空间可以搜索的tractably的,的。与此相反,计算设计策略允许一个更大的集的序列,涵盖了各种各样的性能和功能的筛选。我们已开发出一系列从头计算蛋白设计METHODS能够对付蛋白质设计的几个重要领域。这些包括单体蛋白质的设计,增加了稳定性和复合物的结合亲和力增加。

为了更广泛的传播这些方法,使用我们提出蛋白质的智慧( http://www.proteinwisdom.org ),各种蛋白质设计的问题提供了一个工具,自动化的方法。提交初始化结构模板的设计过程。设计的第一阶段是一个优化序列选择阶段,目的是提高稳定性通过序列中的空间最小化势能。选择序列,然后通过折叠特异性的舞台和亲和力阶段运行。 A等级排序的列表中的每个步骤的序列的过程中,伴随着有关的设计结构,为用户提供了全面的量化评估设计​​。在这里,我们提供了详细情况Of各自的设计方法,以及几个显着的实验通过使用一种方法,已经取得的成就。

References

  1. Drexler, K. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl Acad. Sci. U.S.A. 78, 5275-5278 (1981).
  2. Pabo, C. Molecular technology: Designing proteins and peptides. Nature. 301, 200 (1983).
  3. Floudas, C. A. Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51, 1872-1884 (2005).
  4. Fung, H. K., Welsh, W. J., Floudas, C. A. Computational de novo peptide and protein design: Rigid templates versus flexible templates. Ind. Eng. Chem. Res. 47, 993-1001 (2008).
  5. Ponder, J., Richards, F. Tertiary templates for proteins. J. Mol. Biol. 193, 775-791 (1987).
  6. Dahiyat, B. I., Mayo, S. L. Protein design automation. Protein Sci. 5, 895-903 (1996).
  7. Dahiyat, B. I., Gordon, D. B., Mayo, S. L. Automated design of the surface positions of protein helices. Protein Sci. 6, 1333-1337 (1997).
  8. Su, A., Mayo, S. L. Coupling backbone flexibility and amino acid sequence selection in protein design. Protein Sci. 6, 1701-1707 (1997).
  9. Desjarlais, J., Handel, T. Side chain and backbone flexibility in protein core design. J. Mol. Biol. 290, 305-318 (1999).
  10. Farinas, E., Regan, L. The de novo design of a rubredoxin-like Fe site. Protein Sci. 7, 1939-1946 (1998).
  11. Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T., Kim, P. S. High-resolution protein design with backbone freedom. Science. 282, 1462-1467 (1998).
  12. Koehl, P., Levitt, M. De novo protein design: I. In search of stability and specificity. J. Mol. Biol. 293, 1161-1181 (1999).
  13. Koehl, P., Levitt, M. De novo protein design. II. Plasticity in sequence space. J. Mol. Biol. 293, 1183-1193 (1999).
  14. Kuhlman, B., Dantae, G., Ireton, G., Verani, G., Stoddard, B., Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science. 302, 1364-1368 (2003).
  15. Klepeis, J. L., Floudas, C. A. Integrated structural, computational and experimental approach for lead optimization: Design of compstatin variants with improved activity. J. Am. Chem. Soc. 125, 8422-8423 (2003).
  16. Klepeis, J. L., Floudas, C. A., Morikis, D., Tsokos, C. G., Lambris, J. D. Design of peptide analogs with improved activity using a novel de novo protein design approach. Ind. Eng. Chem. Res. 43, 3817-3826 (2004).
  17. Fung, H. K., Floudas, C. A., Taylor, M. S., Zhang, L., Morikis, D. Toward full-sequence de novo protein design with flexible templates for human beta-defensin-2. Biophys. J. 94, 584-599 (2008).
  18. Bellows, M. L., Fung, H. K., Floudas, C. A., López de Victoria, A., Morikis, D. New compstatin variants through two de novo protein design frameworks. Biophys. J. 98, 2337-2346 (2010).
  19. López de Victoria, A., Gorham, R. D. Jr A new generation of potent complement inhibitors of the compstatin family. Chem. Biol. Drug Des. 77, 431-440 (2011).
  20. Tamamis, P., López de Victoria, A. Molecular dynamics in drug design: New generations of compstatin analogs. Chem. Biol. Drug Des. 79, 703-718 (2012).
  21. Bellows-Peterson, M. L., Fung, H. K. De novo peptide design with c3a receptor agonist and antagonist activities: Theoretical predictions and experimental validation. J. Med. Chem. 55, 4159-4168 (2012).
  22. Bellows, M. L., Taylor, M. S. Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. Biophys. J. 99, 3445-3453 (2010).
  23. Sun, J. -J., Abdeljabbar, D. M., Clarke, N. L., Bellows, M. L., Floudas, C. A., Link, A. J. Reconstitution and engineering of apoptotic protein interactions on the bacterial cell surface. J. Mol. Biol. 394, 297-305 (2009).
  24. Smadbeck, J., Bellows-Peterson, M. L. De novo protein design and validation of histone methyltranferase inhibitors. , In Preparation (2013).
  25. Bellows, M. L., Fung, H. K., Floudas, C. A. Molecular Systems Engineering, Process Systems Engineering. Adjiman, C. S., Galindo, A. 6, Wiley-VCH Verlag GmbH & Co. KGaA. 207-232 (2010).
  26. Rajgaria, R., McAllister, S. R., Floudas, C. A. A novel high resolution Cα-Cα distance dependent force field based on a high quality decoy set. Proteins. 65, 726-741 (2006).
  27. Rajgaria, R., McAllister, S. R., Floudas, C. A. Distance dependent centroid to centroid force fields using high resolution decoys. Proteins. 70, 950-970 (2008).
  28. Fung, H. K., Taylor, M. S., Floudas, C. A. Novel formulations for the sequence selection problem in de novo protein design with flexible templates. Optim. Method. Softw. 22, 51-71 (2007).
  29. Fung, H. K., Rao, S., Floudas, C. A., Prokopyev, O., Pardalos, P. M., Rendl, F. Computational comparison studies of quadratic assignment like formulations for the in silico sequence selection problem in de novo protein design. J. Comb. Optim. 10, 41-60 (2005).
  30. CPLEX. Using the CPLEX Callable Library. , ILOG, Inc. (1997).
  31. Klepeis, J. L., Floudas, C. A. Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys. 110, 7491-7512 (1999).
  32. Klepeis, J. L., Floudas, C. A., Morikis, D., Lambris, J. D. Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem. 20, 1354-1370 (1999).
  33. Klepeis, J. L., Schafroth, H. D., Westerberg, K. M., Floudas, C. A. Deterministic global optimization and ab initio approaches for the structure prediction of polypeptides, dynamics of protein folding and protein-protein interactions. Adv. Chem. Phys. 120, 265-457 (2002).
  34. Klepeis, J. L., Floudas, C. A. Ab initio prediction of helical segments of polypeptides. J. Comput. Chem. 23, 246-266 (2002).
  35. Klepeis, J. L., Floudas, C. A. Prediction of beta-sheet topology and disulfide bridges in polypeptides. J. Comput. Chem. 24, 191-208 (2003).
  36. Klepeis, J. L., Floudas, C. A. ASTRO-FOLD: A combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophys. J. 85, 2119-2146 (2003).
  37. Klepeis, J. L., Pieja, M. T., Floudas, C. A. A new class of hybrid global optimization algorithms for peptide structure prediction: Integrated hybrids. Comput. Phys. Commun. 151, 121-140 (2003).
  38. Klepeis, J., Pieja, M., Floudas, C. Hybrid global optimization algorithms for protein structure prediction : Alternating hybrids. Biophys. J. 84, 869-882 (2003).
  39. Klepeis, J. L., Floudas, C. Analysis and prediction of loop segments in protein structures. Comput. Chem. Eng. 29, 423-436 (2005).
  40. Mo¨nnigmann, M., Floudas, C. Protein loop structure prediction with flexible stem geometries. Proteins. 61, 748-762 (2005).
  41. McAllister, S. R., Mickus, B. E., Klepeis, J. L., Floudas, C. A. A novel approach for alpha-helical topology prediction in globular proteins: Generation of interhelical restraints. Proteins. 65, 930-952 (2006).
  42. Floudas, C. A., Fung, H. K., McAllister, S. R., Mönnigmann, M., Rajgaria, R. Advances in protein structure prediction and de novo protein design: A review. Chem. Eng. Sci. 61, 966-988 (2006).
  43. Subramani, A., Wei, Y., Floudas, C. A. ASTRO-FOLD 2.0: An enhanced framework for protein structure prediction. AIChE J. 58, 1619-1637 (2012).
  44. Wei, Y., Thompson, J., Floudas, C. Concord: a consensus method for protein secondary structure prediction via mixed integer linear optimization. P. Roy. Soc. A-Math. Phy. 468, 831-850 (2011).
  45. Subramani, A., Floudas, C. β-sheet topology prediction with high precision and recall for β and mixed α/β proteins. PLoS One. 7, e32461 (2012).
  46. Rajgaria, R., Wei, Y., Floudas, C. A. Contact prediction for beta and alpha-beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO-FOLD. Proteins. 78, 1825-1846 (2010).
  47. Subramani, A., Floudas, C. A. Structure prediction of loops with fixed and flexible stems. J. Phys. Chem. B. 116, 6670-6682 (2012).
  48. Güntert, P., Mumenthaler, C., Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283-298 (1997).
  49. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353-378 (2004).
  50. Ponder, J. TINKER, software tools for molecular design. , Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine. Louis, MO. (1998).
  51. Cornell, W. D., Cieplak, P. A 2nd generation forcefield for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179-5197 (1995).
  52. Lilien, R. H., Stevens, B. W., Anderson, A. C., Donald, B. R. A novel ensemble-based scoring and search algorithm for protein redesign and its application to modify the substrate specificity of the gramicidin synthetase a phenylalanine adenylation enzyme. J. Comput. Biol. 12, 740-761 (2005).
  53. Lee, M. R., Baker, D., Kollman, P. A. 2.1 and 1.8 A°Cα RMSD structure predictions on two small proteins, HP-36 and S15. J. Am. Chem. Soc. 123, 1040-1046 (2001).
  54. Rohl, C. A., Baker, D. De novo determination of protein backbone structure from residual dipolar couplings using rosetta. J. Am. Chem. Soc. 124, 2723-2729 (2002).
  55. Rohl, C. A., Strauss, C. E. M., Misura, K. M. S., Baker, D. Protein structure prediction using rosetta. Methods Enzymol. 383, 66-93 (2004).
  56. DiMaggio, P. A., McAllister, S. R., Floudas, C. A., Feng, X. J., Rabinowitz, J. D., Rabitz, H. A. Biclustering via optimal re-ordering of data matrices in systems biology: Rigorous methods and comparative studies. BMC Bioinformatics. 9 (458), (2008).
  57. DiMaggio, P. A., McAllister, S. R., Floudas, C. A., Feng, X. J., Rabinowitz, J. D., Rabitz, H. A. A network flow model for biclustering via optimal re-ordering of data matrices. J Global Optimization. 47, 343-354 (2010).
  58. Daily, M. D., Masica, D., Sivasubramanian, A., Somarouthu, S., Gray, J. J. CAPRI rounds 3-5 reveal promising successes and future challenges for RosettaDock. Proteins. 60, 181-186 (2005).
  59. Gray, J. J., Moughon, S., et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331, 281-299 (2003).
  60. Gray, J. J., Moughon, S. E., et al. Protein-protein docking predictions for the CAPRI experiment. Proteins. 52, 118-122 (2003).
  61. Kuhlman, B., Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl Acad. Sci. U.S.A. 97, 10383-10388 (2000).
  62. Jmol: an open-source java viewer for chemical structures in 3d. , Available from: http://www.jmol.org (2013).
蛋白质智慧:一个工作台<em&gt;硅片</em&gt;<em&gt;从头</em&gt;生物分子设计
Play Video
PDF DOI

Cite this Article

Smadbeck, J., Peterson, M. B.,More

Smadbeck, J., Peterson, M. B., Khoury, G. A., Taylor, M. S., Floudas, C. A. Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules. J. Vis. Exp. (77), e50476, doi:10.3791/50476 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter