Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

脛骨神経切断 - マウスにおける脱神経誘発性骨格筋萎縮のために標準化されたモデル

Published: November 3, 2013 doi: 10.3791/50657

Summary

脛骨神経切断モデルは、骨格筋萎縮の、良好な忍容性を検証し、再現可能なモデルです。モデル外科用プロトコルはC57Black6マウスにおいて説明され、示されている。

Abstract

脛骨神経切断モデルは、げっ歯類における除神経誘発性骨格筋萎縮の、良好な忍容性を検証し、再現可能なモデルです。独自に開発し、その大きなサイズに起因したラットで広く使用されていますが、マウスで脛骨神経は、無傷の坐骨神経の腓骨と腓腹神経の枝を残して、それによって維持し、それは簡単にクラッシュまたは離断のいずれかで操作することができる十分な大きさその標的筋肉。したがって、このモデルでは、坐骨神経切断モデル未満の罹患率と歩行の障害を誘発することの利点を提供し、また、研究者が遺伝子組み換えマウスでは筋萎縮の過程を規制する、生理的細胞および分子の生物学的メカニズムを研究することができます。脛骨神経は、腓腹筋、ヒラメ筋と足底の筋肉を供給しているので、その離断は、速筋のII型繊維および/または遅筋型から成る除神経骨格筋の研究を可能にし、私繊維。ここでは、C57Black6マウスにおける脛骨神経切断モデルを示しています。我々は、パラフィン包埋組織切片で筋量及びファイバ型特定の断面積を測定することによって、1,2において、代表的な筋肉のように、腓腹筋の萎縮を評価し、4週後の除神経は、速筋ミオシンための免疫染色。

Introduction

外傷性末梢神経損傷、疾患や薬理学的介入のために骨格筋の除神経、筋肉の自発的収縮機能の即時損失結果。筋肉が付随して萎縮し始め、タイムリーな、上質な再支配が1,2が発生した場合、この萎縮が可逆的である。再支配が存在しない場合には、筋線維の萎縮が進行し、筋肉における不可逆生物学的変化は、筋線維と筋線維の死で発生。ここでは、マウスの脛骨神経切断モデル、除神経誘発性骨格筋萎縮や線維症のモデルを示しています。このモデルは、腓腹筋とヒラメ筋のin vivoでの筋萎縮の根底にある生理学的、細胞および分子の生物学的メカニズムを研究する科学者が可能になります。歴史的にノックアウト、特にトランスジェニックマウスラインにこのモデルのラット、より最近のアプリケーションで主に使用されているが、研究者が自分の役割を評価することができますin vivoでの誘導、開発と保守、または代わりの解像度、筋萎縮と線維症への関心の特定のタンパク質(秒)。

脛骨神経は、げっ歯類の後肢における混合モータ感覚末梢神経であり、坐骨神経の三端子の枝の一つです。脛骨神経の横断は、腓腹筋、ヒラメ筋と足底の筋肉を(および後脛骨筋、指屈筋長母と屈筋hallicus長母を含め、足の3小深い屈筋)denervates、及びラット3,4でよく標準化され、検証モデルである。腓腹筋とヒラメ筋を容易にシリアル時点で切開することができる脛骨神経切断、固定され、処理された筋肉組織学および筋肉繊維形態計測の評価のために、又はフラッシュは、例えば研究するための筋RNAおよびタンパク質の抽出のために凍結し、ポスト筋萎縮を調節する細胞内シグナル伝達ネットワーク。 GAstrocnemius筋は混合繊維の種類の筋肉(I型とII型、主にII型が)で、ヒラメ筋、それによって評価5,6のために高速と低速の両方筋筋を提供する、タイプI線維の大部分で構成されています。脛骨神経切断モデルは、短期(日)7と長期(週か月まで)4,8両方で除神経誘発性筋萎縮の過程を研究するのに適しています。

坐骨神経切断モデル(一般的なげっ歯類に使用される除神経誘発性筋萎縮の第二モデル)とは対照的に、脛骨神経切断は、より魅力的なモデル作り、動物の少ない合併症を誘発する。脛骨神経の横断は、坐骨神経の腓骨と腓腹神経の枝はそのまま残り、一方坐骨神経の横断は、このように保存し、2を歩き回るために動物の能力を損なう、脚(ひざ下)と足のすべての筋肉をdenervates彼らのターゲットの筋肉と感覚領土。マウスは足底フレックスにできないか、足を反転しますが、簡単に歩き回るすることができ、重量が著しくモデルの罹患率を減少させる、両方の後肢に均等に負担する。歩行パターンを評価する歩行分析研究は、脛骨と坐骨神経傷害後のラットで行われ、そのフットプリントを示し、体重負荷の方が脛骨傷害9,10で保存されています。研究デザイン3を必要とする場合、また、脛骨神経切断モデルにおいて、腓骨神経は、後述時点で動員することができ、遅延された神経再生の供給源として転送される。これとは対照的に、坐骨神経離断モデルにおける遅延再支配は非常に大幅にモデルの技術的な難しさを増加させ、熟練した外科医にその使用を制限し、坐骨神経の赤字に神経移植の使用を必要とする。

しばらく脛骨神経切断モデルRそれが神経支配脛骨神経とふくらはぎの筋肉の両方の動物の手術における無菌手術技術と演算子の親しみを、equires外科医ではない、または高度に動物の手術の経験が個人は、容易にこのモデルをマスターできるように、操作のために容易にアクセスし、識別可能。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

前にこのモデルを使用することに、研究者は彼らの機関の動物使用統治体からの外科的プロトコルの承認を受けている必要があります。モデルは、研究倫理委員会、ハミルトン·ヘルス·サイエンス社、マクマスター大学(AUP#10-04-24)によって承認されており、動物のケアカナダ評議会の勧告に厳密に従って実施される。

1。マウス準備

  1. マウス重量を量る。 5イソフルラン%または2%ハロタンで麻酔を誘導する。使用される回路は、外科医を保護するために麻酔の掃気適切性を確保する必要があります。 2-3分後、動物の呼吸が遅くなります。まばたき反射が不在であることを確認し、手術麻酔を(マウスでも応答すなわちなし )を確認するために足ですだれスペースをつまむ。手術中に角膜の乾燥を防ぐために、眼に眼用潤滑剤を適用する。
  2. 坐骨からラテラル太ももや臀部を剃る膝にノッチ及びproviodineで消毒。剃毛は、手術野の適切な可視化を確実にするために、神経解剖と離断との干渉を最小限にするために切開毛のサイトは自由を維持します。優れたと大腿骨の後方にある坐骨ノッチは、触診によって識別することができます。

2。手術手技

  1. 2%(ハロタン1%)に吸入イソフルランを軽減し、操作や解剖顕微鏡下でその側(上向きに手術のために意図された側)、上にマウスを置きます。 3.5X倍率が成人(20〜25 g)のマウスには十分であるため、別の方法として手術は外科ルーペを用いて行うことができる。
  2. 滅菌手袋を着用。触診で坐骨ノッチを識別します。メスを使用して、坐骨ノッチから膝への横方向の大腿(約1cm)の皮膚を切開。
  3. 優しく肌を広げた。大腿二頭筋を特定し、これは、横方向の大腿部の平らな表面的な筋肉です。すぐに皮膚の下。細かいハサミを使用して、筋線維に沿って大腿二頭筋を分割し、坐骨神経とその枝を公開するために、スプリングリトラクタと開いたまま。
  4. 大腿二頭筋に直ちに深い坐骨神経を識別します。それは、その特徴的な光沢のある白い色で識別され、直径が約0.8mmですることができる。これは、膝窩のレベルで、脛骨腓骨と腓腹神経に分岐、坐骨ノッチから膝まで実行されます。
  5. 優しく超微細鉗子と春microdissectingハサミで腓骨と腓腹神経の枝から脛骨を分離。脛骨神経は、最大の枝であり、通常の中心です。それは枝を分離しながら神経をつぶすしないことが重要です。超微細鉗子でただ外側adventicial層の上に神経を保持し、かつ神経たるみを(教えていない)維持、神経挫滅とトラクションの傷害を避けることができます。
  6. 完全かつ持続的denervati用上で、慎重に膝血管を避け、遠できるだけはさみmicrodissectingと脛骨神経を切った。また、2〜4週間の予想を完全再支配との一時的な除神経のために、脛骨神経は単純に15秒の代わりに離断のための超微細鉗子で粉砕することができます。 (末梢神経損傷後の再成長と対象筋肉をreinnervateます。)
  7. 完全な除神経が必要な場合は、腓腹筋の異常な再神経支配を防止するために10-0ナイロンおよび再近似5-0 VICRYLと大腿二頭筋と大腿二頭筋の前面に切開脛骨神経の端部を縫合しヒラメ筋。
  8. 実行中の5-0 VICRYL縫合糸で皮膚を閉じます。

3。手術ケアを投稿

  1. 吸入麻酔薬をオフにしますが、酸素の流れを維持します。皮下buprinorphine(または代替)鎮痛剤を投与する。
  2. ないクリーンなケージにマウスを移しません寝具麻酔から目覚めた。 ambulatingまでケージ内および直接観察下温暖毛布の上においてください。
  3. 十分柔らかい寝具柔らかい底のケージ内の転送と家(ではない線)。
  4. 手術の傷や褥瘡ヒール潰瘍や噛むの証拠の開発のための足の状態を毎日手術肢を点検。軽微なトラブルは、proviodineなどの局所抗生物質や防腐剤を使用して管理することができます。動物の安楽死を必要とするエンドポイントインジケータは減量、貧しい自己ケアのエビデンス(フリルファー)、および猫背姿勢です。また、主要な傷の中断または局所抗生物質で1〜2週間で治癒や痛みを持っているようには見えない潰瘍と動物を犠牲にすべきである。

4。除神経腓腹筋とヒラメ筋の収穫

  1. 希望術後時点で、CO 2過剰摂取でマウスと犠牲を量る。
  2. 両方の内側側面を剃る手術および対コントロールの足とアルコールできれい。操作や解剖顕微鏡下にマウスを置き、あるいは拡大するため手術視野ルーペを使用しています。
  3. 手術肢で、足首周り足首から膝にメスと円周方向と内側カーフスキンを切開。優しく筋肉オフと近位大腿部に向かって鉗子で皮膚を引っ張る。これは、脚のすべての筋肉を公開します。脚の後部側面に膝から足首まで実行され、皮膚の下にすぐにあるふくらはぎの筋肉である腓腹筋を識別。膝の内側側面に腓腹筋の近位、大腿二頭筋の遠位挿入を識別します。その遠位挿入で大腿二頭筋は薄く、フィルム状に表示され、腓腹筋の最も近位部分に重なる。はさみや平滑末端郭清を使用した、優しくガスから大腿二頭筋の遠位挿入を分離trocnemius筋肉。
  4. 踵には、その遠位挿入では、腓腹筋はアキレス腱に先細り。白と筋骨たくましい現れアキレス腱を識別。ホールドまたは腓腹筋を鎮圧しないように注意しながら、ピンセットでアキレス腱を保持し、ハサミを使って踵挿入からアキレス腱を分割。
  5. まだ腱を保持、そっと膝を原点に向かって遠位挿入(ヒラメは別途収穫することができる)から、深いヒラメ(深い赤)から腓腹筋(淡赤色)を持ち上げます。
  6. はさみを使って内側と外側大腿chondylesから腓腹筋の起源を割って脚オフ腓腹筋を解剖。筋肉に非常に穏やかなトラクションは、このプロセスを容易にします。筋肉を粉砕しないように注意してください。
  7. ヒラメは今直ちに腓腹筋のサイトの下に、はっきりと見えるようになります。そのにアキレス腱への挿入からヒラメを持ち上げたり後部ふくらはぎにイギン。ヒラメが誤っ腓腹筋で発生した場合、優しく収穫標本から分離。腓腹筋(光赤)とヒラメ(暗赤色)は、それらの色の違いによる収穫標本で容易に識別残る。
  8. 精密スケールで別々に筋肉を量る。
  9. 液体窒素で冷却したイソペンタン中で10%ホルマリン、または凍結固定で組織学のために液体窒素中でスナップ凍結用の半分(抽出、その後のタンパク質および/ ​​またはRNAの場合)、ハーフ( すなわち形態計測評価、免疫組織学)のいずれか固定、垂直方向に筋肉を分割、必要に応じて。
  10. 制御腓腹筋とヒラメ筋を収穫するコントロールで上記のステップ4.3、未作動、側から繰り返します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

脛骨神経切断は、ふくらはぎの腓腹筋、ヒラメ筋と足底の筋肉をdenervates。ここでは、代表的な筋肉として、腓腹筋における萎縮の開発を評価する。腓腹筋は1,2、または4週間除神経2-3ヶ月齢C57Black 6マウス(ジャクソン研究所)から採取した。タイプII速筋の筋線維( 図2)の断面積が行うように、筋肉の量は徐々に時間をかけて、( 図1)減少する。腓腹筋は、混合繊維の種類の筋肉(IとタイプIIを入力)ですが、除神経は、私はII繊維11を入力するように型から繊維型スイッチを誘導、およびタイプの結果として、十分な数のI繊維は測定に使用できない場合がありますと堅牢な統計分析。

50657fig1.jpg "/>
図1。除神経腓腹筋は、プログレッシブ萎縮を示しています。C57Black 6マウスは右脛骨神経の離断を受けた。腓腹筋が除神経(右)と対コントロールから収穫した(左)神経切断後に1,2、または4週間で後肢。腓腹筋の筋を秤量し、除神経筋の重量は反対側の制御神経支配筋の比として表される。除神経は、筋肉量の漸進的な損失を引き起こす。

図2
図2。除神経腓腹筋は除神経とコントロール腓腹筋の筋肉がmusclで断面にカットホルマリン固定された、であった() 筋線維の断面積で進歩的な減少を示しています電子半ばセクションおよび7に記載されいるようビオチン化二次抗体とstreptavidin-HRP/DAB続い抗骨格筋ミオシン、速筋アイソフォーム(マイ-32、シグマ、1:500希釈)のために免疫染色。ヘマトキシリン​​は対比として用いた。速筋タイプII繊維は茶色と遅筋I型繊維は薄紫を染色染色。繊維の断面積(CSA)が7,12に記載されるようImageJのソフトウェア(ベセスダ、NIH)を用いて測定した。速筋タイプII繊維はプログレッシブ萎縮を示す。少なすぎるI型繊維は、繊維サイズの統計的に有効な評価を可能にする除神経腓腹筋に存在している。 (N = 6〜9匹/群は200筋繊維の最小値は手術表現型に盲目校閲によって筋肉あたりを測定したデータは+ /平均として示されている- 。。。SDスケールバーは100μmのに等しい)。 拡大表示するにはここをクリック図

Subscription Required. Please recommend JoVE to your librarian.

Discussion

除神経誘発性骨格筋萎縮の脛骨神経切断モデルは、ラットで一般的に採用し、十分に検証されたモデルです。私たちは、捜査官は、遺伝子改変マウスの存在を活用し、筋肉量7,8の規制に重要なタンパク質が存在しない場合に、生体内での筋萎縮の過程を研究することができ、マウスで使用するため、このモデルを適応している。腓腹筋とヒラメ筋、このモデルでは除神経の両方が、このように、その後の分子解析のための優れた品質のmRNAと蛋白質を提供し、容易かつ迅速に最小限の処理に解剖することができます。同様に、原因の筋肉の大きさ、それらは付随組織と形態学的分析のための同じ動物から組織を提供し、分割することができます。場合後肢機能評価は、トラック分析逐次実行することができますを歩いて、必要とされる。足は、インク中に浸漬され、マウスが上に紙で囲いを歩いているボトム。版画の特性を確実に測定し、フットプリント特性が機能筋肉群の13,14を反映するので、神経筋障害、歩行の妥協の範囲を示すために得点することができます。もともとラット13で開発され、検証されているが、歩行追跡分析もマウス15で行うことができる。

脛骨神経切断は一般に非常によくマウスによって許容されています。鎮痛剤の唯一の単回投与は、手術直後の期間が必要である。適切な無菌テクニックを使用すると、軟部組織感染症はまれである。脛骨神経切断は、足の底側面に知覚感覚異常を誘発しますが、我々の経験のC57black6とノックアウトまたはこの行に派生するトランスジェニックマウスでは、自動切断するする傾向はありません。しかし、マウスは自動切断の兆し、かかと褥瘡だけでなく、ケアのエンドポイントのポイントを毎日検査する必要があります。私たちは、ごくわずかな死亡のウィットを持っているがHモデルは、我々はマウスの約2〜5%が自己媒介に傷害、または操作後肢、で開発褥瘡のため安楽死させなければならないことを見つける。柔らかい寝具の使用は術後動物の快適性を確保することが重要であると運営側に褥瘡の発生を防ぐのに役立ちます。坐骨神経結紮同様にライゲーションのSNIモデル(どこ坐骨の脛骨と総腓骨枝を結紮されていますが、腹はそのまま残っている)神経因性疼痛16,17のモデルとしての役割を果たす。このように、異痛および熱痛覚過敏は、同様に我々のモデルでは足に発生する可能性があるが、我々は柔らかい寝具で通常の日常活動とマウスであからさまな疼痛行動を見ていない。

唯一後肢の脛骨神経が離断され、マウスの重量は両方の後肢にほぼ均等に負担しているので、反対側の未作動肢から筋肉組織を各動物7-10内部コントロールとして使用することができます。これは歩行のより重要な異常が対側肢の筋の肥大応答を誘導することができる坐骨離断モデル、場合とは限りません。脛骨神経切断モデルでは、我々は通常、我々のコントロールの筋肉7,8として非作動肢から腓腹筋とヒラメ筋を使用しています。捜査官は、コントロールの筋肉を収穫するために、そこから別の動物を使用することを選択した場合は、偽手術を行うべきである。偽手術は麻酔、脛骨神経を露出させ、皮膚の分割、ない横断の管理から成るでしょう。皮膚は単に神経暴露後閉鎖される。

いくつかの末梢神経切断モデルでは、近位の切り株からターゲットの筋肉への誤った再支配は、計画された脱神経を汚染。このモデルでは、このようにして筋肉インタフェースを閉じ、大腿二頭筋の表層表面に切開脛骨神経の近位端を固定し、阻害剤tsの誤った再支配。このように、モデルの重要な、必要不可欠な工程である。誤った再支配は、このモデルではまれである。

同様に、手術中の神経の慎重な取り扱いが不可欠である。腓腹と腓骨神経の枝を穏やか脛骨離断の前脛骨神経から分離され、その過程で粉砕または伸ばさないようにする必要があります。これらの神経の乱暴な取り扱いは、部分的に他の後肢の筋肉をdenervating、その機能が損なわれます。このような場合は動物の歩行を差ソール脛骨神経切断を受けたマウスに比べて影響される、可変筋ローディング実験結果を汚染する可能性がある。除神経筋肉組織を解剖するとき同様に、注意が必要です。筋肉は腱によって処理され、組織学、筋線維形態計測分析、おそらく遺伝子発現に影響を​​与えるクラッシュアーチファクトを避けるために、直接把握すべきではない。

私達はTypically動物が成熟しているように、マウス20〜24グラム(生後2〜3ヶ月)で、このモデルを採用し、坐骨と脛骨神経は簡単に処理されるように十分な大きさの両方です。手術は必要に応じて小さく、若い動物で実行されますが、制限要因ここで執刀医の腕前になることができます。治験責任医師は、除神経筋衛星細胞応答の研究に興味を持っている場合、これは問題になることがあります。衛星細胞の再生の可能性は、若い、動物18、したがって、若い動物が経験の少ないオペレータのための技術的な課題を提示し、実験計画に必要となる場合がありますに比べて、高齢で減少。

脛骨神経切断モデルは、必要に応じて、遅延筋肉再支配(> 4週間)のいずれかに、除神経誘発筋萎縮の単にモデルから適応と経験豊富な外科オペレーターが1,3用意されています。することができますINVで指定された除神経の期間の後estigator、マウスは再手術と腓骨神経は、除神経筋肉をreinnervateに動員することができます。切開脛骨神経の遠位断端が識別され、トリミングと腓骨神経は、その先端部に動員とmicrosurgically脛骨神経の切り株に修復されます。腓骨神経は、腓腹筋とヒラメ筋をreinnervateする脛骨神経の切り株に約1mm /日の割合で成長します。脛骨神経切断モデルは、神経移植が原因で腓骨神経の可用性の再支配の手順2で必要ではないという点で、坐骨神経切断モデルを上回る利点を提供します。しかし、神経reanastomosesは熟練と経験を積んだオペレータの精度を必要とすることに留意すべきである。

要約すると、ここで私たちは、除神経誘発性骨格筋萎縮の容易な、堅牢な、よく検証され、再現可能なモデルとして、マウスで脛骨神経切断モデルを示しています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

利害の衝突は宣言されていません。

Acknowledgments

この作品は、CIHR筋研究パートナーシップ( - ; JAEBへ90959 JNM)からの補助金によって支えられて。

Materials

Name Company Catalog Number Comments
Reagents and Materials
10-0 Nylon suture Ethicon 2850G
5-0 Vicryl suture Ethicon J553G
Equipment
Spring microdissecting scissors Fine Surgical Tools 15021-15
Ultra fine forceps Fine Surgical Tools 11370-40
Non locking micro needle holder (driver) Fine Surgical Tools 12076-12
Spring retractor Fine Surgical Tools 17000-02

DOWNLOAD MATERIALS LIST

References

  1. Fu, S. Y., Gordon, T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J. Neurosci. 15, 3886-3895 (1995).
  2. Kobayashi, J., Mackinnon, S. E., Watanabe, O., Ball, D. J., Gu, X. M., Hunter, D. A., Kuzon, W. M. The effect of duration of muscle denervation on functional recovery in the rat model. Muscle Nerve. 20, 858-866 (1997).
  3. Bain, J. R., Veltri, K. L., Chamberlain, D., Fahnestock, M. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience. , 103-503 (2001).
  4. Batt, J., Bain, J., Goncalves, J., Michalski, B., Plant, P., Fahnestock, M., Woodgett, J. Differential gene expression profiling of short and long term denervated muscle. FASEB J. 20, 115-117 (2006).
  5. Sher, J., Cardasis, C. Skeletal muscle fiber types in the adult mouse. Acta Neurol. Scand. 54, 45-56 (1976).
  6. Agbulut, O., Noirez, P., Beaumont, F., Butler-Browne, G. Myosin heavy chain isoforms in postnatal muscle development of mice. Biol. Cell. 95, 399-406 (2003).
  7. Nagpal, P., Plant, P. J., Correa, J., Bain, A., Takeda, M., Kawabe, H., Rotin, D., Bain, J. R., Batt, J. A. The ubiquitin ligase nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLoS ONE. 7, e46427 (2012).
  8. Plant, P. J., Bain, J. R., Correa, J. E., Woo, M., Batt, J. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J. Appl. Physiol. 107, 224-234 (2009).
  9. Varejao, A. S., Meek, M. F., Ferreira, A. J., Patricio, J. A., Cabrita, A. M. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J. Neurosci. Methods. 108, 1-9 (2001).
  10. Willand, M. P., Holmes, M., Bain, J., Fahnestock, M., de Bruin, H. Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve. 48, 219-225 (2013).
  11. Sterne, G. D., Coulton, G. R., Brown, R. A., Green, C. J., Terenghi, G. Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. J. Cell Biol. 139, 709-715 (1997).
  12. Plant, P. J., North, M. L., Ward, A., Ward, M., Khanna, N., Correa, J., Scott, J. A., Batt, J. Hypertrophic airway smooth muscle mass correlates with increased airway responsiveness in a murine model of asthma. Am. J. Respir. Cell Mol. Biol. 46, 532-540 (2012).
  13. Bain, J. R., Mackinnon, S. E., Hunter, D. A. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast. Reconstr. Surg. 83, 129-138 (1989).
  14. Hare, G. M., Evans, P. J., Mackinnon, S. E., Best, T. J., Midha, R., Szalai, J. P., Hunter, D. A. Walking track analysis: utilization of individual footprint parameters. Ann. Plast. Surg. 30, 147-153 (1993).
  15. McLean, J., Batt, J., Doering, L. C., Rotin, D., Bain, J. R. Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase sigma knock-out mice. J. Neurosci. 22, 5481-5491 (2002).
  16. Richner, M., Bjerrum, O. J., Nykjaer, A., Vaegter, C. B. The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J. Vis. Exp. (54), e3092 (2011).
  17. Rogoz, K., Lagerstrom, M. C., Dufour, S., Kullander, K. VGLUT2-dependent glutamatergic transmission in primary afferents is required for intact nociception in both acute and persistent pain modalities. Pain. 153, 1525-1536 (2012).
  18. Thornell, L. E. Sarcopenic obesity: satellite cells in the aging muscle. Curr. Opin. Clin. Nutr. Metab. Care. 14, 22-27 (2011).

Tags

医学、発行81、マウス、脛骨神経、gastronemius、ヒラメ筋、萎縮、除神経、神経再生、筋線維、離断
脛骨神経切断 - マウスにおける脱神経誘発性骨格筋萎縮のために標準化されたモデル
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Batt, J. A. E., Bain, J. R. TibialMore

Batt, J. A. E., Bain, J. R. Tibial Nerve Transection - A Standardized Model for Denervation-induced Skeletal Muscle Atrophy in Mice. J. Vis. Exp. (81), e50657, doi:10.3791/50657 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter