Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version


Одновременное Многоцветный изображений биологических структур с флуоресцентной фотоактивации локализации микроскопии

doi: 10.3791/50680 Published: December 9, 2013
* These authors contributed equally


Name Company Catalog Number Comments
LabTek II chambers Nunc
Fluorescent beads Invitrogen F-8801 Beads for calibration
Tetraspeck beads Invitrogen T-7279 Four color beads for calibration
Objective immersion oil Zeiss 518F Immersion oil for high NA objective (dependent on choice of objective)
HPLC water Fisher Scientific W5-4
Media ATCC 30-2003 Or Cellgro 10-090
Antibiotics GIBCO 15070-063
serum Thermo Scientific SH30087.03
Lipofectamine Invitrogen 52887
Optimem I GIBCO 11058-021
Trypsin MPBiomedicals 1689149
paraformaldehyde Fisher Scientific AA433689M CAUTION: Toxic



  1. Hess, S. T., Girirajan, T. P., Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258-4272 (2006).
  2. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic Opt. reconstruction microscopy (STORM). Nat. Methods. 3, 793-795 (2006).
  3. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Sci. 313, 1642-1645 (2006).
  4. Gould, T. J., Verkhusha, V. V., Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291-308 (2009).
  5. Gould, T. J., et al. Nanoscale imaging of molecular positions and anisotropies. Nat. Methods. 5, 1027-1030 (2008).
  6. Juette, M. F., et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Meth. 5, 527-529 (2008).
  7. Kanchanawong, P., et al. Nanoscale architecture of integrin-based cell adhesions. Nat. 468, 580-584 (2010).
  8. Shtengel, G., et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U.S.A. 106, 3125-3130 (2009).
  9. Huang, B., Wang, W. Q., Bates, M., Zhuang, X. W. Three-dimensional super-resolution imaging by stochastic Opt. reconstruction microscopy. Sci. 319, 810-813 (2008).
  10. Hess, S. T., et al. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. U.S.A. 104, 17370-17375 (2007).
  11. Manley, S., et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 5, 155-157 (2008).
  12. Shroff, H., Galbraith, C. G., Galbraith, J. A., Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods. 5, 417-423 (2008).
  13. Sengupta, P., et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods. 8, 969-975 (2011).
  14. Shroff, H., et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. U.S.A. 104, 20308-20313 (2007).
  15. Bock, H., et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B. 88, 161-165 (2007).
  16. Bossi, M., et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8, 2463-2468 (2008).
  17. Gunewardene, M. S., et al. Superresolution Imaging of Multiple Fluorescent Proteins with Highly Overlapping Emission Spectra in Living Cells. Biophys. J. 101, 1522-1528 (2011).
  18. Wilmes, S., et al. Triple-Color Super-Resolution Imaging of Live Cells: Resolving Submicroscopic Receptor Organization in the Plasma Membrane. Angewandte Chemie Int. Ed. 51, 4868-4871 (2012).
  19. Gudheti, M. V., et al. Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. Biophys. J. (2013).
  20. Tanaka, K. A., et al. Membrane molecules mobile even after chemical fixation. Nat. Methods. 7, 865-866 (2010).
  21. Beisker, W., Dolbeare, F., Gray, J. W. An improved immunocytochemical procedure for high-sensitivity detection of incorporated bromodeoxyuridine. Cytometry. 8, 235-239 (1987).
  22. Koehler, A. New Method of Illumination for Photomicrographical Purposes. Journal of the Royal Microscopical Society. 14, 261-262 Forthcoming.
  23. Self, S. A. Focusing of Spherical Gaussian Beams. Appl. Opt. 22, 658-661 (1983).
  24. Annibale, P., Scarselli, M., Greco, M., Radenovic, A. Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt. Nanoscopy. 1, (2012).
  25. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., Zhuang, X. W. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods. 8, 1027 (2011).
  26. Lippincott-Schwartz, J., Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555-565 (2009).
  27. Subach, F. V., Verkhusha, V. V. Chromophore Transformations in Red Fluorescent Proteins. Chem. Rev. 112, 4308-4327 (2012).
  28. Simpson-Holley, M., et al. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virol. 301, 212-225 (2002).
  29. Sternberg, S. R. Biomedical Image Processing. IEEE Computer. 22-34 (1983).
  30. Thompson, R. E., Larson, D. R., Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775-2783 (2002).
  31. Juette, M. F., Bewersdorf, J. Three-Dimensional Tracking of Single Fluorescent Particles with Submillisecond Temporal Resolution. Nano Lett. 10, 4657-4663 (2010).
  32. Gould, T. J., Hess, S. T. Biophysical Tools for Biologists, Vol 2: In Vivo Techniques. Methods Cell Biol. 89, 329-358 (2008).
  33. Enderlein, J., Toprak, E., Selvin, P. R. Polarization effect on position accuracy of fluorophore localization. Opt Express. 14, 8111-8120 (2006).
  34. Jones, S. A., Shim, S. H., He, J., Zhuang, X. W. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods. 8, 499-U496 (2011).
  35. Mlodzianoski, M. J., et al. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express. 19, 15009-15019 (2011).
  36. Kim, D., Curthoys, N. M., Parent, M., Hess, S. T. Bleed-through correction for rendering and correlation analysis in multi-colour localization microscopy. J. Opt. (2013).
Одновременное Многоцветный изображений биологических структур с флуоресцентной фотоактивации локализации микроскопии
Play Video

Cite this Article

Curthoys, N. M., Mlodzianoski, M. J., Kim, D., Hess, S. T. Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy. J. Vis. Exp. (82), e50680, doi:10.3791/50680 (2013).More

Curthoys, N. M., Mlodzianoski, M. J., Kim, D., Hess, S. T. Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy. J. Vis. Exp. (82), e50680, doi:10.3791/50680 (2013).

Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter