Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

Высокая пропускная Микрофлюидных Быстрое и низкая стоимость создания прототипов Упаковка Методы

Published: December 23, 2013 doi: 10.3791/50735

Abstract

В этой работе, 3 различные методы упаковки и монтажные представлены. Они могут быть разделены на две категории: одноразового использования и многоразовые методов упаковки.

Одноразовый техника пользы упаковывая использует УФ-основе и температуры отверждения эпоксидных смол для подключения микропробирок с отверстиями для доступа, провода-связи для интегрированных схем включения и серебра эпоксидной смолы для электрических соединений. Этот метод основан на надежной технологии сборки, которая может выдержать относительно высокое давление близко к 1 атм и не нуждается в поддержку в целях укрепления микрофлюидных архитектуру.

Многоразовые методы упаковки состоят из микропробирок соединительных PDMS основе и анизотропных клейких пленок для электрических соединений. Эти устройства более чувствительны и хрупки. Следовательно, поддержка плексигласа добавляется в микрофлюидном структуры для улучшения электрического контакта, когда анизотропные клейкие пленки используются, а также strengtheн микрофлюидных архитектура. Кроме того, микроманипулятор необходим для поддержания трубки при использовании тонкий слой PDMS, чтобы соединить их в отверстия доступа. Другие толщины PDMS слоев, начиная от 0.45-3 мм, тестируются сравнить лучший приверженность против ставок инъекций. Прикладные ставки инъекций варьировала от 50-300 мкл / ч в течение 0.45-3 мм PDMS слоев соответственно. Эти методы в основном применимы для приложений низкого давления. Однако, они могут быть продлено на них высокого давления через процесс плазменной кислорода постоянно уплотнения PDMS в стеклянных подложках. Главное преимущество этой технологии, кроме того, что это многоразовые, состоит из сохранении устройство наблюдаемую, когда длина микроканальной очень короткий (в пределах 3 мм или меньше).

Materials

Name Company Catalog Number Comments
Epoxy 731 Epotek 731
PDMS Dow Corning SYLGARD 184
UV Epoxy Epotek OG159
Micropump Harvard Apparatus PHD Ultra
PCB Advanced Circuits
Plexiglass Ecole Polytechnique
Adhesive conductive film 3M 9703

DOWNLOAD MATERIALS LIST

References

  1. Pamme, N., Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip. 6, 974-980 (2006).
  2. Ghallab, Y., Badawy, W. Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip. IEEE Circuits Syst. Mag. 4, 5-15 (2004).
  3. Hwang, S., et al. CMOS Microelectrode Array for Electrochemical Lab-on-a-Chip Applications. IEEE J. Sensors. 9, 609-615 (2009).
  4. Dürr, M., Kentsch, J., Müller, T., Schnelle, T., Stelzle, M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis. 24, 722-731 (2003).
  5. Chuang, C. H., Huang, Y. W., Wu, Y. T. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells. Biomed. Microdev. 14, 271-278 (2012).
  6. Xie, L., Premachandran, C., Chew, M., Chong, S. C. Development of a Disposable Bio-Microfluidic Package With Reagents Self-Contained Reservoirs and Micro-Valves for a DNA Lab-on-a-Chip (LOC) Application. IEEE Trans. Adv. Packag. 32, 528-535 (2009).
  7. J. Beebe, D., et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Lett. Nat. 404, 588-590 (2000).
  8. Howlader, M., et al. Room-temperature microfluidics packaging using sequential plasma activation process. IEEE Trans. Adv. Packag. 29, 448-456 (2006).
  9. Farris, S., Vitek, J., Giroux, M. L. Deep brain stimulation hardware complications: The role of electrode impedance and current measurements. Mov. Disord. 23, 755-760 (2008).
  10. Nelson, M. J., Pouget, P. Do Electrode Properties Create a Problem in Interpreting Local Field Potential Recordings. J. Neurophysiol. 103, 2315-2317 (2010).
  11. Han, K. H., Frazier, A. Reliability aspects of packaging and integration technology for microfluidic systems. IEEE Trans. Dev. Mat. Rel. 5, 452-457 (2005).
  12. Ye, X., Kim, W. S., Rubakhin, S. S., Sweedler, J. V. Measurement of nitric oxide by 4,5-diaminofluorescein without interferences. Analyst. 129, 1200-1205 (2004).
  13. Hwang, S., et al. CMOS Microelectrode Array for Electrochemical Lab-on-a-Chip Applications. IEEE J. Sensors. 9, 609-615 (2009).
  14. Kaler, K. V. I. S., Dalton, C. A cost effective, re-configurable electrokinetic microfluidic chip platform. Sens. Actuators B Chem. 123, 628-635 (2007).
  15. Miled, M. A., Sawan, M. Interconnecting Microtubes in Microfluidic Applications. CMC application note. , (2012).
  16. Galliano, A., Bistac, S., Schultz, J. Adhesion and friction of PDMS networks: molecular weight effects. J. Colloid Interface Sci. 265, 372-379 (2003).
  17. Miled, M. A., Sawan, M. Removable PDMS-based Interconnector for Low-pressure Microfluidic Applications. CMC application note. , (2012).
  18. Miled, M. A., Sawan, M. An Assembly Technique for Reusable Microfluidic Chips with Electrical Interface. CMC application note. , (2012).
  19. Li, S., Chen, S. Polydimethylsioxane fluidic interconnects for microfluidic systems. IEEE Trans. Adv. Packag. 26, 242-247 (2003).
  20. Lee, E., Howard, D., Liang, E., Collins, S., Smith, R. Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM. J. Micromech. Microeng. 14, 535-541 (2004).
  21. Kua, C. H., Lam, Y. C., Yang, C., youcef-Toumi, K., Rodriguez, I. Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. J. Electrostat. 66, 514-525 (2008).
  22. Saarela, V., et al. Re-usable multi-inlet PDMS fluidic connector. J. Sens. Actuators B Chem. 114, 552-557 (2006).
  23. Pattekar, A., Kothare, M. Novel microfluidic interconnectors for high temperature and pressure applications. J. Micromech. Microeng. 13, 337-345 (2003).
  24. Gray, B. L., et al. Novel interconnection technologies for integrated microfluidic systems. J. Sens. Actuators A Phys. 77, (1999).
  25. Miled, M. A., Sawan, M. Electrode robustness in artificial cerebrospinal fluid for dielectrophoresis-based LoC. IEEE Eng. Med. Biol. Conf. , 1390-1393 (2012).
Высокая пропускная Микрофлюидных Быстрое и низкая стоимость создания прототипов Упаковка Методы
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Miled, A., Sawan, M. High Throughput More

Miled, A., Sawan, M. High Throughput Microfluidic Rapid and Low Cost Prototyping Packaging Methods. J. Vis. Exp. (82), e50735, doi:10.3791/50735 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter