Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

複屈折およびタッチ呼び起こすエスケープ応答アッセイによる幼虫のゼブラフィッシュ骨格筋の欠陥の分析

Published: December 13, 2013 doi: 10.3791/50925

Materials

Name Company Catalog Number Comments
Tricaine Sigma A5040
Petri dishes Fischer Scientific 0875711Z
Forceps Fischer Scientific 100189-588
Insect pin Fischer Scientific S67375
Polarized lenses Ritz Camera Quantaray Tristar Optics C-PL 72mm
Incubator Fischer Scientific Isotemp Incubator Model 630D
Microscope Nikon Instruments Inc. SMZ 1500
Camera Diagnostic Instruments Inc. SPOT RT3
Imaging software Diagnostic Instruments Inc. SPOT 5.1 Advanced

DOWNLOAD MATERIALS LIST

References

  1. Bassett, D. I., Bryson-Richardson, R. J., Daggett, D. F., Gautier, P., Keenan, D. G., Currie, P. D. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development. 130, 5851-5860 (2003).
  2. Gupta, V., et al. The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies. Hum. Mol. Genet. 20 (9), 1712-1725 (2011).
  3. Hall, T. E., et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 104 (17), 7092-7097 (2007).
  4. Dowling, J. J., et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 5 (2), e1000372 (2009).
  5. Telfer, W. R., Nelson, D. D., Waugh, T., Brooks, S. V., Dowling, J. J. Neb: a zebrafish model of nemaline myopathy due to nebulin mutation. Dis. Model Mech. 5 (3), 389-396 (2012).
  6. Ferrante, M. I., Kiff, R. M., Goulding, D. A., Stemple, D. L. Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J. Cell Sci. 124 (4), 565-577 (2011).
  7. Hawkins, T. A., et al. The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development. 135 (6), 1147-1156 (2008).
  8. Barbazuk, W. B., et al. The syntenic relationship of the zebrafish and human genomes. Genome Res. 10 (9), 1351-1358 (2000).
  9. Schapira, G., Dreyfus, J. C., Joly, M. Changes in the flow birefringence of myosin as a result of muscular atrophy. Nature. 170 (4325), 494-495 (1952).
  10. Kimmel, C. B., Patterson, J., Kimmel, R. O. The development and behavioral characteristics of the startle response in zebrafish. Dev. Psychobiol. 7, 47-60 (1974).
  11. Eaton, R. C., Bombardieri, R. A., Meyer, D. L. The Mauthner-initiated startle response in teleost fish. J. Exp. Biol. 66, 65-81 (1977).
  12. Saint-Amant, L., Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37 (4), 622-632 (1998).
  13. Hirata, H., et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development. 134 (15), 2771-2781 (2007).
  14. Wallace, G. Q., McNally, E. M. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71, 37-57 (2009).
  15. Granato, M., et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development. 123, 399-413 (1996).
  16. Berger, J., Sztal, T., Currie, P. D. Quantification of birefringence readily measures the level of muscle damage in zebrafish. Biochem. Biophys. Res. Commun. 423 (4), 785-788 (2012).
  17. Low, S. E., et al. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J. Neurosci. 31 (32), 11633-11644 (2011).
  18. Liu, D. W., Westerfield, M. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebrafish swimming. J. Physiol. 403, 73-89 (1988).
複屈折およびタッチ呼び起こすエスケープ応答アッセイによる幼虫のゼブラフィッシュ骨格筋の欠陥の分析
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Smith, L. L., Beggs, A. H., Gupta,More

Smith, L. L., Beggs, A. H., Gupta, V. A. Analysis of Skeletal Muscle Defects in Larval Zebrafish by Birefringence and Touch-evoke Escape Response Assays. J. Vis. Exp. (82), e50925, doi:10.3791/50925 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter