Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

Análise de apoptose em embriões Zebrafish por Whole-mount imunofluorescência para detectar Caspase 3 ativado

Published: December 20, 2013 doi: 10.3791/51060

Abstract

Whole-mount imunofluorescência para detectar ativado Caspase 3 (ensaio CASP3) é útil para identificar células em apoptose ou intrínseca ou extrínseca em embriões de peixe-zebra. A análise de todo o monte fornece informação espacial em relação à especificidade do tecido de células apoptosing, embora o corte e / ou colabeling é finalmente obrigado a identificar os tipos de células em apoptose exatas. O ensaio todo-mount CASP3 é otimizado para análise de embriões fixadas entre o estágio de 4 células e 32 horas pós-fecundação e é útil para uma série de aplicações, incluindo a análise de mutantes peixe-zebra e morphants, superexpressão de tipo selvagem e mutante mRNAs, e exposição a substâncias químicas. Comparado com coloração laranja de acridina, que pode identificar células em apoptose em embriões vivos em uma questão de horas, CASP3 e TUNEL ensaios levar muito mais tempo para ser concluído (2-4 dias). No entanto, devido ao carácter dinâmico da formação de células apoptóticas e de apuramento, análise de correcçãoembriões ed assegura comparação precisa de células apoptóticas através de múltiplas amostras em pontos de tempo específicos. Descobrimos também o ensaio CASP3 ser superior à análise de células em apoptose pelo ensaio todo-mount TUNEL em relação ao custo e confiabilidade. Em geral, o ensaio CASP3 representa, um ensaio altamente reprodutível robusto, em que a análise de células em apoptose em embriões de peixe-zebra iniciais.

Materials

Name Company Catalog Number Comments
1.5 ml tubes  Denville Scientific c2170 Nonhazardous. Any similar 1.5 m plastic tubes will suffice.
10x Phosphate Buffered Saline (PBS) Sigma Aldrich P5493 Nonhazardous.
a-activated-human-Caspase-3 antibody Fisher Scientific BDB559565 May be harmful if inhaled or swallowed.
a-GFP monoclonal antibody (mouse) Life Technologies 33-2600 May be harmful if inhaled or swallowed.
a-HuC/HuD human neuronal protein, mouse IgG2b, monoclonal 16A11 - UNCONJ Life Technologies A21271 May be harmful if inhaled or swallowed.
Albumin, Bovine BSA Heat Shock Isolation  Amresco CAS 9048-46-8 Nonhazardous. Can also be purchased through Bioexpress: 0332-1006
Alexa Fluor 488 Donkey anti-mouse IgG Life Technologies A11029 Use at 1:200 dilution.  May be harmful if inhaled or swallowed.
Alexa Fluor 488 Donkey anti-Rabbit IgG Life Technologies A21206 Use at 1:200 dilution.  May be harmful if inhaled or swallowed.
Alexa Fluor 568 Donkey anti-Rabbit IgG Life Technologies A10042 Use at 1:200 dilution.  May be harmful if inhaled or swallowed.
Dimethyl Sulfoxide (DMSO) Sigma Aldrich D8418 Flammable.
Dumont #5 Inox Forceps (standard tips/straight) Fine Science Tools 11251-20 Sharp!
FBS HyClone Fetal Bovine Serum  Thermo-Fisher SH3091003 Nonhazardous.
Fisher Scientific Ocelot Rotator Fisher Scientific 05-450-21 Any rotator with manual speed control is suitable.
Instant Ocean Aquarium Salt  Petco 1373684 Nonhazardous.
Methanol (acetone-free) Sigma Aldrich M1775 Flammable: toxic by inhalation, ingestion and contact.
Methylcellulose Sigma Aldrich M0387-1006 Nonhazardous.
Paraformaldehyde Sigma Aldrich P6148 Flammable: toxic by inhalation, ingestion and contact.
Probe (Angled 80 Short/15.5cm/0.15mm tip diameter) Fine Science Tools 10140-02 Sharp!
Pronase Roche 11459643001 Nonhazardous.
Pyrex Spot Plate Fisher Scientific 13-748B Nonhazardous.
Transfer Pipets, Samco general purpose Thermo-Scientific 204 Nonhazardous.
Triton X-100 Sigma Aldrich T8787 Irritant: harmful by ingestion or contact.
Tween-20 Sigma Aldrich P7949 Nonhazardous. Other brands include VWR #97063-872.

DOWNLOAD MATERIALS LIST

References

  1. Tait, S. W., Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621-632 (2010).
  2. Taylor, R. C., Cullen, S. P., Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231-241 (2008).
  3. Eimon, P. M., et al. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ. 13, 1619-1630 (2006).
  4. Jette, C. A., et al. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ. 15, 1063-1072 (2008).
  5. Kratz, E., et al. Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ. 13, 1631-1640 (2006).
  6. Sidi, S., et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 133, 864-877 (2008).
  7. Zhao, X., et al. Interruption of cenph causes mitotic failure and embryonic death, and its haploinsufficiency suppresses cancer in zebrafish. J. Biol. Chem. 285, 27924-27934 (2010).
  8. Yager, T. D., Ikegami, R., Rivera-Bennetts, A. K., Zhao, C., Brooker, D. High-resolution imaging at the cellular and subcellular levels in flattened whole mounts of early zebrafish embryos. Biochem. Cell Biol. 75, 535-550 (1997).
  9. Furutani-Seiki, M., et al. Neural degeneration mutants in the zebrafish, Danio rerio. Development. 123, 229-239 (1996).
  10. Sorrells, S., et al. Ccdc94 Protects Cells from Ionizing Radiation by Inhibiting the Expression of p53. PLoS Genet. 8, (2012).
  11. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501 (1992).
  12. Cole, L. K., Ross, L. S. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240, 123-142 (2001).
  13. Abrams, J. M., White, K., Fessler, L. I., Steller, H. Programmed cell death during Drosophila embryogenesis. Development. 117, 29-43 (1993).
  14. Beers Jr, R. F., Hendley, D. D., Steiner, R. F. Inhibition and activation of polynucleotide phosphorylase through the formation of complexes between acridine orange and polynucleotides. Nature. 182, 242-244 (1958).
  15. Delic, J., Coppey, J., Magdelenat, H., Coppey-Moisan, M. Impossibility of acridine orange intercalation in nuclear DNA of the living cell. Exp. Cell Res. 194, 147-153 (1991).
  16. Westerfield, M. The Zebrafish Book. , University of Oregon Press. Eugene, OR. (1993).
  17. Shin, J., Park, H. C., Topczewska, J. M., Mawdsley, D. J., Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7-14 (2003).
  18. Park, H. C., et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279-293 (2000).
Análise de apoptose em embriões Zebrafish por Whole-mount imunofluorescência para detectar Caspase 3 ativado
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Sorrells, S., Toruno, C., Stewart,More

Sorrells, S., Toruno, C., Stewart, R. A., Jette, C. Analysis of Apoptosis in Zebrafish Embryos by Whole-mount Immunofluorescence to Detect Activated Caspase 3. J. Vis. Exp. (82), e51060, doi:10.3791/51060 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter