Summary

该拼图方块的使用作为评价环境富集的功效的一种手段

Published: December 29, 2014
doi:

Summary

Environmental enrichment provides a potential protective effect against neurodegenerative disorders. Currently, however, there is no easy way of determining the efficacy of enrichment procedures. This protocol describes a simple “Puzzle Box” method for assessing an animal’s cognitive function, in order to reveal the effectiveness of environmental enrichment.

Abstract

Environmental enrichment can dramatically influence the development and function of neural circuits. Further, enrichment has been shown to successfully delay the onset of symptoms in models of Huntington’s disease 1-4, suggesting environmental factors can evoke a neuroprotective effect against the progressive, cellular level damage observed in neurodegenerative disorders. The ways in which an animal can be environmentally enriched, however, can vary considerably. Further, there is no straightforward manner in which the effects of environmental enrichment can be assessed: most methods require either fairly complicated behavioral paradigms and/or postmortem anatomical/physiological analyses. This protocol describes the use of a simple and inexpensive behavioral assay, the Puzzle Box 5-7 as a robust means of determining the efficacy of increased social, sensory and motor stimulation on mice compared to cohorts raised in standard laboratory conditions. This simple problem solving task takes advantage of a rodent’s innate desire to avoid open enclosures by seeking shelter. Cognitive ability is assessed by adding increasingly complex impediments to the shelter’s entrance. The time a given subject takes to successfully remove the obstructions and enter the shelter serves as the primary metric for task performance. This method could provide a reliable means of rapidly assessing the efficacy of different enrichment protocols on cognitive function, thus paving the way for systematically determining the role specific environmental factors play in delaying the onset of neurodevelopmental and neurodegenerative disease.

Introduction

丰富环境(EE)可以被定义为周围提供动物与社会交往,运动活动,和更大的感官刺激比平常经历在标准实验室environment.EE增加机会已经显示出持续影响动物的行为,使左右变化,如学习和记忆的任务降低压力和焦虑有关的活动8-10,提高了性能8,11,发病初期的运动协调性和探索性的活动11,上瘾的物质变化,产妇护理8以及电阻12 15。此外,EE已经揭示改善神经退行性疾病的影响,延缓其发作和减小在亨廷顿1-4,16,帕金森氏17和阿尔茨海默氏病18的动物模型的症状的严重程度。

这些变化COR相关的解剖和分子改变EE被称为整个大脑诱发。从开发的初期阶段,丰富的环境中饲养的动物表现出无数的神经变化,包括增加大脑的重量和皮质的厚度,树突分支9,2-22和突触密度23。 EE可以改变两者的水平和生长因子表达9,24-30,这已被证明有助于感官25,26,28,29加速发展,助记符30,以及马达电路31,32的定时。

调查EE的影响时,没有考虑到不同类型的个人研究9,24,27,30中使用的动物和环境的前期工作已经揭示了次矛盾的结果。目前,还可以用来测量在不同菌株和规格不同EE范式的有效性没有一致的和简单的行为的任务动物当中。

的益智方块任务的目的是作为一个简单的测试,以确定动物的原生解决问题的能力7。放置在开放区域的动物都必须除去妨碍位于一个小开口内以便访问一个覆盖区域/住房材料。每个受试者给出三个试验具有相同的阻塞,以便评估三种不同的认知属性。一审产生的内在或本地解决问题的能力的基准指标。在第二试验中,在同一天中运行,给出了一些指示来改善,从而加强策略用于除去特定障碍物动物的能力。在第三试验中,在第二天进行的,使我们了解到受试者的保留和召回得知解决该任务的能力。

动机为解决这些“阻塞难题”,由动物可以变化,有可能唤起一种与生俱来的欲望,以避免开放的领域和寻求庇护,还有一种内在驱动探索周围的环境6,7。众多潜在行为的驱动来解决这一难题盒的愿望基本的表明,大脑的不同区域都参与调解的工作性能。以前的工作已经表明,在精神分裂症的鼠模型中,前额叶皮层以及海马中涉及采集此任务5。大鼠病变研究也揭示了大量参与益智箱的性能,包括各种丘脑核,下丘脑,小脑和边缘结构的大脑区域。总之,这些发现表明,从事这一解决问题的任务涉及的主机与认知功能相关的神经结构。

的益智方块已成功地用于评估由M展出了解决问题的小鼠的能力,以及认知缺陷精神分裂症5-7尿液车型。上的任务的性能已被证明是高度一致的,并与其他认知行为测试6的结果很好地相关。这项工作的目的是从而适应拼图方块的任务,成为确定EE的有效性的简单和可靠的手段。

Protocol

伦理学声明:所有的程序批准了悉尼大学的动物伦理委员会,并符合国家卫生和澳大利亚的指引,医学研究委员会。程序是在其被饲养在悉尼大学的博世灭鼠设施C57 / BL6J小鼠进行。所有小鼠被安置在一个通风良好的房间21°C的环境温度在12小时光暗周期灯在0600小时的独立通风笼与自由采食获得干粮和水。女性晚期妊娠被随机分配到标准或环保丰富的住房条件。 1.房屋(?…

Representative Results

此处所描述的结果是有代表性的样品,用来自几个队列选自不同窝的拍摄数据。所有的行为测试是0700和1100小时之间进行的,与动物的人群中随机测试顺序。在一个丰富的环境中饲养的动物(N = 14,女7例和7男)花了显著更少的时间到拼图方块比在标准环境下长大内解决阻塞任务(N = 15,女7例和8例男性)(见图3)(重复测量ANOVA与环境因子主体之间,F = 19.525,P <0.001)。的益智方?…

Discussion

提出的数据表明,该拼图盒可有效地用于评估EE的影响。在丰富的环境中提高小鼠持续了显著少来这套行为分析比没有内标准实验室条件下饲养的动物内解决难题阻塞时间。此外,这种差异在三四个条件测试一审最为突出,这表明EE对动物的原生解决问题的能力有较大的影响,相对于他们的能力,以加强或保留解决方案,通过任务提出的问题。

该拼图方块的主要优点是它的价?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Black Acrylic Board 750 x 280 mm
White Acrylic Board 280 x 250 mm
White Acrylic Board 280 x 250 mm
White Acrylic Board 750 x 250 mm
White Acrylic Board 750 x 250 mm
White Acrylic Board 150 x 280 mm
White Acrylic Board 280 x 250 mm with a 40 x 40 mm "door" cut into one side
Underpass 3 pieces of 40 x 120 mm plexiglass or acrylic
Note: If unable to access acrylic board, plexiglass or similar non-porous material will suffice.
Webcam Logitech C210 Fix to roof with electrical tape. Alternatively, use a tripod.
VirtualDub v1.10.4 VirtualDub N/A  Software for recording behaviour videos. Input from webcam.
TopScan v 3.0 CleverSys Inc. N/A  Software for automated top-view tracking and analysis of mouse behaviour. Captured videos are analysed post-hoc.

References

  1. Hockly, E., et al. Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol. 51, 235-242 (2002).
  2. Spires, T. L., et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci. 24, 2270-2276 (2004).
  3. van Dellen, A., Blakemore, C., Deacon, R., York, D., Hannan, A. J. Delaying the onset of Huntington’s in mice. Nature. 404, 721-722 (2000).
  4. van Dellen, A., Cordery, P. M., Spires, T. L., Blakemore, C., Hannan, A. J. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC neuroscience. 9, 34 (2008).
  5. Ben Abdallah, N. M., et al. The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia. Exp Neurol. 227, 42-52 (2011).
  6. Galsworthy, M. J., et al. Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behav Genet. 35, 675-692 (2005).
  7. Galsworthy, M. J., Paya-Cano, J. L., Monleon, S., Plomin, R. Evidence for general cognitive ability (g) in heterogeneous stock mice and an analysis of potential confounds. Genes Brain Behav. 1, 88-95 (2002).
  8. Sparling, J. E., Mahoney, M., Baker, S., Bielajew, C. The effects of gestational and postpartum environmental enrichment on the mother rat: A preliminary investigation. Behav Brain Res. 208, 213-223 (2010).
  9. Turner, C. A., Lewis, M. H. Environmental enrichment: effects on stereotyped behavior and neurotrophin levels. Physiol Behav. 80, 259-266 (2003).
  10. Turner, C. A., Lewis, M. H., King, M. A. Environmental enrichment: effects on stereotyped behavior and dendritic morphology. Dev Psychobiol. 43, 20-27 (2003).
  11. Turner, C. A., Yang, M. C., Lewis, M. H. Environmental enrichment: effects on stereotyped behavior and regional neuronal metabolic activity. Brain Res. 938, 15-21 (2002).
  12. Simonetti, T., Lee, H., Bourke, M., Leamey, C. A., Sawatari, A. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse. PLoS One. 4, e6780 (2009).
  13. El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., Solinas, M. Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology (Berl). 203, 561-570 (2009).
  14. Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R., Jaber, M. Reversal of cocaine addiction by environmental enrichment). Proc Natl Acad Sci U S A. 105, 17145-17150 (2008).
  15. Solinas, M., Thiriet, N., Chauvet, C., Jaber, M. Prevention and treatment of drug addiction by environmental enrichment. Progress in neurobiology. 92, 572-592 (2010).
  16. Solinas, M., Thiriet, N., El Rawas, R., Lardeux, V., Jaber, M. Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology. 34, 1102-1111 (2009).
  17. Kondo, M., et al. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci. 27, 3342-3350 (2008).
  18. Faherty, C. J., Raviie Shepherd, K., Herasimtschuk, A., Smeyne, R. J. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res. 134, 170-179 (2005).
  19. Gortz, N., et al. Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav Brain Res. 191, 43-48 (2008).
  20. Bennett, E. L., Diamond, M. C., Krech, D., Rosenzweig, M. R. Chemical and Anatomical Plasticity Brain. Science. 146, 610-619 (1964).
  21. Krech, D., Rosenzweig, M. R., Bennett, E. L. Effects of environmental complexity and training on brain chemistry. J Comp Physiol Psychol. 53, 509-519 (1960).
  22. Rosenzweig, M. R., Krech, D., Bennett, E. L., Diamond, M. C. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol. 55, 429-437 (1962).
  23. Faherty, C. J., Kerley, D., Smeyne, R. J. A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment. Brain Res Dev Brain Res. 141, 55-61 (2003).
  24. Globus, A., Rosenzweig, M. R., Bennett, E. L., Diamond, M. C. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 82, 175-181 (1973).
  25. Greenough, W. T., Volkmar, F. R. Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp Neurol. 40, 491-504 (1973).
  26. Li, S., Tian, X., Hartley, D. M., Feig, L. A. The environment versus genetics in controlling the contribution of MAP kinases to synaptic plasticity. Current biology : CB. 16, 2303-2313 (2006).
  27. Angelucci, F., et al. Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum. 8, 499-506 (2009).
  28. Cancedda, L., et al. Acceleration of visual system development by environmental enrichment. J Neurosci. 24, 4840-4848 (2004).
  29. Guzzetta, A., et al. Massage accelerates brain development and the maturation of visual function. J Neurosci. 29, 6042-6051 (2009).
  30. Ickes, B. R., et al. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol. 164, 45-52 (2000).
  31. Landi, S., Ciucci, F., Maffei, L., Berardi, N., Cenni, M. C. Setting the pace for retinal development: environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. J Neurosci. 29, 10809-10819 (2009).
  32. Landi, S., et al. Retinal functional development is sensitive to environmental enrichment: a role for BDNF. FASEB J. 21, 130-139 (2007).
  33. Pham, T. M., et al. Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience. 94, 279-286 (1999).
  34. Pham, T. M., Soderstrom, S., Winblad, B., Mohammed, A. H. Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats. Behav Brain Res. 103, 63-70 (1999).
  35. Sale, A., Berardi, N., Maffei, L. Enrich the environment to empower the brain. Trends Neurosci. 32, 233-239 (2009).
  36. Sale, A., et al. Maternal enrichment during pregnancy accelerates retinal development of the fetus. PLoS One. 2, e1160 (2007).
  37. Wolansky, M. J., Cabrera, R. J., Ibarra, G. R., Mongiat, L., Azcurra, J. M. Exogenous NGF alters a critical motor period in rat striatum. Neuroreport. 10, 2705-2709 (1999).
  38. Wolansky, M. J., Paratcha, G. C., Ibarra, G. R., Azcurra, J. M. Nerve growth factor preserves a critical motor period in rat striatum. J Neurobiol. 38, 129-136 (1999).
  39. Thompson, R., Huestis, P. W., Crinella, F. M., Yu, J. Brain mechanisms underlying motor skill learning in the rat. Am. J. Phys. Med. Rehabil. 69 (4), 191-197 (1990).
  40. Lipina, T. V., Palomo, V., Gil, C., Martinez, A., Roder, J. C. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology. 64, 205-214 (2013).
  41. Carlier, P., Jamon, M. Observational learning in C57BL/6j mice. Behav Brain Res. 174, 125-131 (2006).
  42. Cole, B. J., Jones, G. H. Double dissociation between the effects of muscarinic antagonists and benzodiazepine receptor agonists on the acquisition and retention of passive avoidance. Psychopharmacology (Berl). 118, 37-41 (1995).
  43. Woodside, B. L., Borroni, A. M., Hammonds, M. D., Teyler, T. J. NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task). Neurobiol Learn Mem. 81, 105-114 (2004).
  44. Ben Abdallah, N. M., M, N., et al. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice. Behav Brain Res. 252, 275-286 (2013).
  45. Viola, G. G., et al. Influence of environmental enrichment on an object recognition task in CF1 mice. Physiol Behav. 99, 17-21 (2010).
  46. Schrijver, N. C., Bahr, N. I., Weiss, I. C., Wurbel, H. Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav. 73, 209-224 (2002).
  47. Kempermann, G., Gast, D., Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol. 52, 135-143 (2002).
  48. Hattori, S., et al. Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res. 180, 69-76 (2007).
  49. Barbelivien, A., et al. Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat. Behav Brain Res. 169, 231-238 (2006).
  50. Sousa, N., Almeida, O. F., Wotjak, C. T. A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 5 Suppl 2, 5-24 (2006).
  51. Clelland, C. D., et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 325, 210-213 (2009).
  52. Jentsch, J. D., et al. Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology. 34, 2601-2608 (2009).
  53. Zhao, J., et al. Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the RXR/RAR pathway. J Biol Chem. , (2014).
  54. Perez, H. J., et al. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology. 319C, 38-43 (2014).

Play Video

Cite This Article
O’Connor, A. M., Burton, T. J., Leamey, C. A., Sawatari, A. The Use of the Puzzle Box as a Means of Assessing the Efficacy of Environmental Enrichment. J. Vis. Exp. (94), e52225, doi:10.3791/52225 (2014).

View Video