Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

在鼠背耳蜗核的听觉通路的光遗传学刺激直接可视化

Published: January 20, 2015 doi: 10.3791/52426
* These authors contributed equally

Abstract

调查使用病毒介导的基因转移到阻止或逆转听力丧失在很大程度上被转移到外周听觉系统。很少有研究探讨基因转移到中央听觉系统。脑干的背侧耳蜗核(DCN),它包含了听觉通路的二阶神经元,是用于基因转移的潜在位点。在这个协议中,对于鼠DCN经由后颅窝的方法直接和最大曝光技术被证实。这种方法允许对急性或存活手术。继DCN的直接可视化,一台主机的实验是可能的,包括注射视蛋白进入耳蜗核和随后刺激的由光纤耦合到蓝色光的激光。其他神经生理学实验,如电刺激和神经注射器描也是可行的。visualiza的水平化和刺激的持续时间可达到使这种方法适用于广泛的实验。

Protocol

注:所有的实验程序按照马萨诸塞州眼的动物护理和使用委员会及耳科医院和哈佛医学院,这遵​​循国家动物保健指南,包括公共卫生服务政策上的人文关怀和使用实验动物,在执行ILAR指南,以及动物福利法。上市实验步骤如下左DCN的细节曝光。使用无菌器械,同时执行的生存术。

1.主开颅手术和背耳蜗核曝光

  1. 麻醉
    1. 通过腹腔内给药麻醉小鼠,年龄8-12周,体重18-24克,用甲苯噻嗪20mg / kg的氯胺酮和100毫克/公斤。确定合适的麻醉监测心脏,呼吸率,以及脚趾捏撤回反射。对眼睛的地方兽医软膏,以防止干燥,而在麻醉下。一旦充分麻醉下,头发剃覆吨他头皮以提供无障碍地访问手术部位。
  2. 手术定位
    1. 将鼠标牢固在小动物立体定位架,由一吻夹具保持在适当位置。
    2. 确保吻钳位足够松,以便有足够的呼吸,但不够紧完全固定在鼠标的头部。如果鼠标头是松散的,动物是可能的过程的开颅部分期间掉出的头支架。
    3. 放置在标准的方式,这允许心脏速率监测听觉脑干植入电极。呼吸频率应该由可视化监控。需要注意的是正常的心脏速率和呼吸速率会根据鼠标的年龄而变化。
    4. 温度计放置和euthermia确保通过放置在恒温加热毯。
  3. 切开皮肤及颅骨interparietal和枕骨骨曝光
    1. 下一个microscOPE,使透过皮肤的垂直切口处开始的中线,耳廓直接之间,并延伸到后头部的尾部。下面正中切开皮肤,横向位移皮肤。可视覆盖颅骨的左后侧方面的肌肉。
    2. 肌肉附件离断取下的肌肉覆左顶叶,interparietal和颅骨枕骨骨各自的骨头用手术刀或虹膜剪刀。观察一个小的程度以及切割边缘的肌肉出血。通过用棉签10-15秒温和的压力减少了。
  4. 开颅覆耳蜗核
    1. 确定相关缝合线,包括矢状面和lambda缝合线( 图1,左图)。
    2. 用咬骨钳,作开颅手术在interparietal骨,中线左侧,〜2毫米尾鳍在lambda缝合线。这个区域覆盖了DCN。
    3. 跟随着克开颅手术,观察薄层硬膜覆盖在小脑。使用手术刀,删除硬脑膜。 ( 图1,中图)。
      注:去除硬脑膜可能导致小程度的出血。使用手术刀刀片去除硬脑膜的这个过程是为了减少小脑抽吸,这将集中在脑干表面和模糊的识别与DCN期间血液损失量。小鼠总血量为〜1.5毫升不应超过>低于15%。如果出血超过这个数额,鼠标应提供与补液。
    4. 取出凝固的血液覆盖的棉签涂抹小脑。或者,用牙科点到小脑清除血液离开血淌轻轻生理盐水。
  5. 小脑吸
    1. 使用5法语吸,吸左侧小脑覆DCN的最外侧部分,直到与DCN是相UAL( 图1,右图 )。卸下左侧小脑大约1/4到1/3。毗邻DCN的主要地标是上半规管的壶腹。
      注:小脑心愿是协议的关键一步。如果它发生在一个单一的企图,而不是与吸多遍,因为这会导致出血是最成功的进行了小脑导演的愿望。以协助抽吸,设置显微镜的焦平面处,CN,这将是略微远端小脑的表面的期望的深度。焦平面设置到CN将改进的可视化,并确保一个鲜明的图​​像。
    2. 下面愿望,再出血,脑脊液(CSF)集结起来,小脑排量的DCN预期。灌输0.5毫升的无菌盐水的迅速进入开颅以防止血液凝固。然后轻柔涂抹的用牙科点和吸入的组合可以是使用扫清了DCN直接可视化的路径。不要直接接触DCN的表面。

2.压力显微注射的病毒介导的基因转移和手术恢复

  1. 与DCN是免费的覆盖血液和脑脊液后和清晰可见,用10微升Hamilton注射器在2分钟内使压力显微注射入DCN。
  2. 用显微操作引入针,直到针尖不再与DCN的表面下可见。
  3. 为了获得最佳性能,使用33或34号针(使用气密注射器用34号针头)与浅斜面,如45°,以减少钝伤和本地化DCN内注射量,这是一种薄和浅脑干结构(<300微米厚)。
    注意:其他注射手段可以基于利用。理想情况下,注射仪器应具有灵活性,允许一些轻微的奔D,如果需要直接针对DCN。另外,作为小鼠轻微移动整个手术过程中,由于呼吸,仪器应是坚固足以承受运动的少量。

3.手术恢复

  1. 紧接着注射,重新接近皮肤,让鼠标按标准恢复过程来恢复。其余小脑和疤痕组织将填补引起小脑愿望腔。不断地监测动物,直到足够的意识恢复,保持胸骨斜卧。监测心脏速率,呼吸速率,以及饲料的能力。
    注:没有动物已经动过手术返回到与其他动物的笼子,直到完全康复。
  2. 如果鼠标开始走在圈子手术后(<5%的病例),皮肤切口关闭后通常2-4小时,立即牺牲鼠标,因为它很可能有困难的时候喂食。牛逼他的副作用,可能是由于小脑的愿望。动物应为疼痛,术后进行监测,并适当麻醉品应给予保证根据机构的标准动物的舒适性。抗生素可能是必要的,如果感染的证据。

4.二次开颅手术和人工耳蜗核曝光

  1. 2-4周的愈合和病毒介导的基因转移的潜伏期后,重新麻醉与基因转移的类型预先注射小鼠,并重复步骤1.1-1.5孵育时间而变化。
  2. 由镊子,解剖刀,和咬骨钳的组合去除瘢痕组织在开颅站点。
  3. 可视化开颅后,确定剩余的小脑和疤痕组织覆盖在DCN的组合。使用5弗伦奇吸入到吸覆小脑/疤痕组织(类似于前述小脑抽吸)。
  4. 下面的心愿,期待再出血,脑脊液Build镜头,和小脑的其余位。快速引入盐水进开颅以防止血液凝固。用温和的牙齿涂抹点和吸力的组合来清除的DCN直接可视化的路径。
  5. 观察到DCN的表面上。执行光遗传学基础生理学实验为DCN现在访问。引入光刺激,例如用光纤( 图2),以驱动一个光遗传学系的实验。

5.组织学

  1. 下面的实验结论,安乐死鼠标氯胺酮的过量。灌注小鼠生理盐水后跟4%多聚甲醛。
  2. 提取的头骨和后固定2小时脑干。 Cryoprotect在30%蔗糖的脑干中24-48小时。使用一节使用60微米的部分标准的低温​​恒温器脑干。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

部分小脑吸入演示进入耳蜗核

后的皮肤和肌肉覆盖在颅骨被除去,颅骨表面的地标,例如冠状和LAMDA缝合线,表明开颅的大致定位。下面开颅咬骨钳,小脑可视化。小脑的小部分仔细吸出表明该CN,然后可将其注入( 图1)的可视化。

二级耳蜗核暴露的刺激与蓝光激光器

继DCN,与视蛋白的基因转移,和潜伏期的初始曝光,与DCN然后可以通过蓝色光的激光激发。二次开颅手术暴露DCN的表面光刺激的技术方法主要开颅手术(增刊电影1)相似。在DCN,是的表面结构,它是厚度小于300微米。实验小鼠的准备仍存活时间长达6小时。

图1
图1:部分小脑愿望演示访问背耳蜗核。左面板 :在小鼠被放置在保持器中,切口垂直穿过皮肤和软组织沿头骨到颈部的软组织的后方面作出。皮肤是单侧,和肌肉覆冠状缝合线被删除中间面板 :开颅手术,然后完成了小脑和底层背耳蜗核与骨咬骨钳的区域右面板 :对于背耳蜗核曝光,一个5弗伦奇吸入然后用于吸出小脑覆耳蜗核,直到背耳蜗核的可视化。

图2
图2:暴露的耳蜗核为刺激的蓝色光的激光的表面,以产生一个光诱发听性脑干反应光纤耦合到所述背侧耳蜗核的表面上的蓝色光的激光的放置允许的光学刺激视蛋白感染背耳蜗核。蓝条= 400微米。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

本文介绍了DCN在操纵中枢听觉系统的小鼠模型直接可视化的技术。直接可视化的概括方法提供了主要的替代显著的优势,这是立体的方法。为主,DCN的直接可视化允许对脑干部位的立即确认,而立体定向的方法不能提供直接可视化。在于必要延长潜伏期,如在病毒介导的基因转移的情况下的实验中,存在用于低感染效率的潜力,如果注射液“射门”时,目标位置。另外,直接可视化的方法允许用于注射在广泛的动物的年龄。类似的手术方法可以生存实验等动物模型,如大鼠和豚鼠进行使用。

还有在这个协议中的几个关键步骤。首先,将鼠标必须在立体定位支架正确定位。头部的任何运动都会导致难以进行开颅手术。其次,开颅位置是至关重要的。如果开颅没有在适当的位置作出的DCN的下列小脑抽吸图表将是具有挑战性的,如果不是不可能的。最后,该协议的最关键的一步是小脑的局部定向的愿望。有两种技术途径小脑的愿望。在第一个愿望的方式,吸不断举行小脑,提起向上,离脑干。在这种方法中,DCN可以部分可视小脑下方和吸力被保持直到该CN完全可视化和小脑除去。在第二种方法中,小脑被部分吸出几种层状遍,直到DCN被可视化。牙科点可以轻轻涂抹用于清除血液或剩余小脑fragme从CN NTS,如果它不能充分显现。

出血是直接可视化方法的主要缺点,并主要在初始开颅手术和小脑的愿望后发生。在初始开颅手术过程中很多情况下,出血会随时间停止在2-5分钟。放置棉纸或牙科点处出血的部位并允许止血。在小脑抽吸后出血方面,它注入生理盐水(0.5-1毫升)在开颅的部位,以稀释血液,并防止在CN的水平血凝块形成是重要的。吸气和温柔牙医点涂抹的组合可用于清除血液和盐。的确,这种方法的主要限制是该过程的侵入性质。

该协议具有超出操纵听觉系统的影响。 在体内基因转移到中枢神经系统使操纵股利ERSE神经通路和已提出的见解为多个神经功能,包括存储器,电机控制,嗅觉,和试听。16,21-26所述的外科方法,使直接可视化的基因转移和刺激的目的,可潜在地应用于其它区域脑干的,无论是上述的和其它列出。继DCN的直接可视化的掌握,主机的实验是可能的,包括注射视蛋白进入CN和随后刺激蓝光激光器。其他神经生理学实验,如电刺激和神经注射器描记18也是可行的。可视化和这种方法的刺激持续时间的电平允许多个应用范围广泛的实验。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者什么都没有透露。

Acknowledgments

资金来源:这项工作是由基金会资助贝尔塔雷利(DJL),一个MED-EL补助(DJL),以及健康教育资助DC01089国家研究院​​(MCB)的支持。

Materials

Name Company Catalog Number Comments
Stereotaxic holder Stoelting 51500
Homeothermic blanket Harvard 507214
Scalpel blade #11 Fine Surgical Tools 10011-00
Iris scissor Fine Surgical Tools 14084-08
5 French suction Symmetry Surgical 2777914
Dental Points Henry Schein 100-8170
Bone rongeur Fine Surgical Tools 16020-14
10 µl Hamilton syringe Hamilton  7633-01
34 gauge, needle Hamilton  207434
Rongeurs Fine Surgical Tools 16021-14

DOWNLOAD MATERIALS LIST

References

  1. Lalwani, A., Mhatre, A. Cochlear gene therapy. Ear Hear. 24 (4), 342-348 (2003).
  2. Lalwani, A., Jero, J., Mhatre, A. Current issues in cochlear gene transfer. Audiol Neurootol. 7 (3), 146-151 (2002).
  3. Jero, J., et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther. 12 (5), 539-548 (2001).
  4. Koh, S., Pettis, R., Mhatre, A., Lalwani, A. Cochlear microinjection and its effects upon auditory function in the guinea pig. Eur Arch Otorhinolaryngol. 257 (9), 469-472 (2000).
  5. Lalwani, A., Walsh, B., Reilly, P., Muzyczka, N., Mhatre, A. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther. 3 (7), 588-592 (1996).
  6. Wareing, M., Lalwani, A. Cochlear gene therapy: current perspectives. Int J Pediatr Otorhinolaryngol. 5 Suppl 1. (49), 27-30 (1999).
  7. Han, J., et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther. 10 (11), 1867-1873 (1999).
  8. Akil, O., et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 75 (2), 283-293 (2012).
  9. Hernandez, V. H., et al. Optogenetic stimulation of the auditory pathway. J Clin Invest. 124 (3), 1114-1129 (2014).
  10. Adamantidis, A., et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci. 30 (31), 10829-10835 (2011).
  11. Kim, K., et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PloS One. 7 (4), e33612 (2012).
  12. Britt, J., Bonci, A. Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol. 23 (4), 539-545 (2013).
  13. Abbott, S., Coates, M., Stornetta, R., Guyenet, P. Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats. Hypertension. 61 (4), 835-841 (2013).
  14. Carter, M., et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 13 (12), 1526-1533 (2010).
  15. Darrow, K., et al. Optogenetic control of central auditory neurons. Assoc. Res. Otolaryngol. Abstr. (695), (2012).
  16. Shimano, T., et al. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. Brain Res. 1511, 138-152 (2013).
  17. Doucet, J., Ryugo, D. Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol. 385, 245-264 (1997).
  18. Brown, M., Drottar, M., Benson, T., Darrow, K. Commissural axons of the mouse cochlear nucleus. J Comp Neurol. 521, 1683-1696 (2013).
  19. Verma, R., et al. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res. 310, 69-75 (2014).
  20. Taberner, A. M., Liberman, M. C. Response properties of single auditory nerve fibers in the mouse. J Neurophysiol. 93 (1), 557-569 (2005).
  21. Rolls, A., et al. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci. 108 (32), 13305-13310 (2011).
  22. Huff, M., Miller, R., Deisseroth, K., Moorman, D., LaLumiere, R. Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proc Natl Acad Sci. 110 (9), 3597-3602 (2013).
  23. Stortkuhl, K., Fiala, A. The Smell of Blue Light: A New Approach toward Understanding an Olfactory Neuronal Network. Front Neurosci. 5 (72), (2011).
  24. Hira, R., et al. Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Methods. 179 (2), 258-263 (2009).
  25. Ayling, O., Harrison, T., Boyd, J., Foroshkov, A., Murphy, T. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods. 6 (3), 219-224 (2009).
  26. Boyden, E., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268 (2005).

Tags

神经科学,第95,光遗传学,背侧耳蜗核,病毒介导的基因转移,听觉系统
在鼠背耳蜗核的听觉通路的光遗传学刺激直接可视化
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Kozin, E. D., Darrow, K. N., Hight,More

Kozin, E. D., Darrow, K. N., Hight, A. E., Lehmann, A. E., Kaplan, A. B., Brown, M. C., Lee, D. J. Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway. J. Vis. Exp. (95), e52426, doi:10.3791/52426 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter