Materials
Name | Company | Catalog Number | Comments |
1% Antibiotic-Antimycotic Solution | Corning cellgro | 30-004-Cl | |
3 ml Syringe | Falcon | 309656 | |
35 mm x 10 mm Dish | Corning cellgro | 430588 | |
5 ml Polystyrene Round Bottom Tube | Falcon | 352058 | |
Acetic Acid Glacial | Fisher Scientific | A35-500 | |
Alcian Blue 8GX | Rowley Biochemical Danver | 33864-99-2 | |
Allegra 6R Centrifuge | Beckman | ||
Anti-mouse CD16/32 (clone 93) Purified | eBioscience | 14-0161-81 | |
2-Mercaptoethanol | Sigma Aldrich | M7522 | |
BD 1 ml TB Syringe | BD Syringe | 309659 | |
BD 22 G x 1 (0.7 mm x 25 mm) Needles | BD Precision Glide Needle | 205155 | |
BD 25 G 5/8 Needles | BD Syringe | 305122 | |
BD 30 G x 1/2 Needles | BD Precision Glide | 305106 | |
Blue MAX Jr, 15 ml Polypropylene Conical Tube | Falcon | 352097 | |
Chloroform | Fisher Scientific | C298-500 | |
Cytoseal 60 Mounting Medium | Richard-Allan Scientific | 8310-4 | |
Cytospin3 | Shandon | NA | |
DakoCytomation pen | Dako | S2002 | |
Dulbecco Modified Eagle Medium (DMEM) 1x | Corning cellgro | 15-013-CM | |
Ethanol | Sigma Aldrich | E 7023-500ml | |
Fetal Bovine Serum Heat Inactivated | Sigma Aldrich | F4135-500ml | |
FITC Conjugated IgG2b K Rat Isotype Control | eBioscience | 14-4031-82 | |
Fluorescein Isotiocyanate (FITC) Conjugated Anti-mouse KIT (CD117; clone 2B8) | eBioscience | 11-1171-82 | |
Formaldehyde | Fisher Scientific | F79-500 | |
Giemsa Stain Modified | Sigma Aldrich | GS-1L | |
Isothesia | Henry Schein Animal Health | 29405 | |
May-Grunwald Stain | Sigma Aldrich | MG-1L | |
Multiwell 6 well plates | Falcon | 35 3046 | |
Olympus BX60 Microscope | Olympus | NA | |
Paraplast Plus Tissue Embedding Medium | Fisher Brand | 23-021-400 | |
PE Conjugated IgG Armenian Hamster Isotype Control | eBioscience | 12-4888-81 | |
Phosphate-Buffered-Saline (PBS) 1x | Corning cellgro | 21-040-CV | |
Phycoerythrin (PE) Conjugated Anti-mouse FceRIa (clone MAR-1) | eBioscience | 12-5898-82 | |
Propidium Iodide Staining Solution | eBioscience | 00-6990-50 | |
Recombinant Mouse IL-3 | Peprotech | 213-13 | |
Safranin-o Certified | Sigma Aldrich | S8884 | |
Tissue culture flasks T25 25 cm2 | Beckton Dickinson | 353109 | |
Tissue culture flasks T75 75 cm2 | Beckton Dickinson | 353110 | |
Toluidine Blue 1% Aqueous | LabChem-Inc | LC26165-2 | |
Recombinant Mouse SCF | Peprotech | 250-03 |
References
- Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59-76 (1989).
- Galli, S. J., Borregaard, N., Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035-1044 (2011).
- Gurish, M. F., Austen, K. F. Developmental origin and functional specialization of mast cell subsets. Immunity. 37, 25-33 (2012).
- Abraham, S. N., St John, A. L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440-452 (2010).
- Galli, S. J., Grimbaldeston, M., Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478-486 (2008).
- Reber, L. L., Frossard, N. Targeting mast cells in inflammatory diseases. Pharmacol. Ther. 142, 416-435 (2014).
- Galli, S. J. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Ann. Rev. Immunol. 23, 749-786 (2005).
- Moon, T. C. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 3, 111-128 (2010).
- Reber, L. L., Marichal, T., Galli, S. J. New models for analyzing mast cell functions in vivo. Trends Immunol. 33, 613-625 (2012).
- Rodewald, H. R., Feyerabend, T. B. Widespread immunological functions of mast cells: fact or fiction. Immunity. 37, 13-24 (2012).
- Siebenhaar, F. The search for Mast Cell and Basophil models - Are we getting closer to pathophysiological relevance. Allergy. (2014).
- Tsai, M., Grimbaldeston, M. A., Yu, M., Tam, S. Y., Galli, S. J. Using mast cell knock-in mice to analyze the roles of mast cells in allergic responses in vivo. Chem. Immunol. Allergy. 87, 179-197 (2005).
- Galli, S. J., et al. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv. Immunol. (2015).
- Butterfield, J. H., Weiler, D., Dewald, G., Gleich, G. J. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk. Res. 12, 345-355 (1988).
- Kirshenbaum, A. S. Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk. Res. 27, 677-682 (2003).
- Sibilano, R. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J. Immunol. 189, 120-127 (2012).
- Gaudenzio, N., Laurent, C., Valitutti, S., Espinosa, E. Human mast cells drive memory CD4+ T cells toward an inflammatory IL-22+ phenotype. J. Allergy Clin. Immunol. 131, 1400-1407 (2013).
- Tertian, G., Yung, Y. P., Guy-Grand, D., Moore, M. A. Long-term in vitro. culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J. Immunol. 127, 788-794 (1981).
- Yamada, N., Matsushima, H., Tagaya, Y., Shimada, S., Katz, S. I. Generation of a large number of connective tissue type mast cells by culture of murine fetal skin cells. J. Invest. Dermatol. 121, 1425-1432 (2003).
- Malbec, O. Peritoneal cell-derived mast cells: an in vitro. model of mature serosal-type mouse mast cells. J. Immunol. 178, 6465-6475 (2007).
- Galli, S. J., Zsebo, K. M., Geissler, E. N. The Kit ligand, stem cell factor. Adv. Immunol. 55, 1-96 (1994).
- Reber, L., Da Silva, C. A., Frossard, N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur. J. Pharmacol. 533, 327-340 (2006).
- Grimbaldeston, M. A. Mast cell-deficient W.-sash. c-kit. mutant KitW.-sh./W.-sh. mice as a model for investigating mast cell biology in vivo. Am. J. Pathol. 167, 835-848 (2005).
- Lilla, J. N. Reduced mast cell and basophil numbers and function in Cpa3-Cre Mcl-1.fl/fl. mice. Blood. 118, 6930-6938 (2011).
- Dudeck, A. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 34, 973-984 (2011).
- Feyerabend, T. B. Cre-Mediated Cell Ablation Contests Mast Cell Contribution in Models of Antibody and T Cell-Mediated Autoimmunity. Immunity. 35, 832-844 (2011).
- Schafer, B. Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. J. Allergy Clin. Immunol. 131, 541-548 (2013).
- Akahoshi, M. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J. Clin. Invest. 121, 4180-4191 (2011).
- Grimbaldeston, M. A., Nakae, S., Kalesnikoff, J., Tsai, M., Galli, S. J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat. Immunol. 8, 1095-1104 (2007).
- Hershko, A. Y. Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity. 35, 562-571 (2011).
- Metz, M. Mast cells can enhance resistance to snake and honeybee venoms. Science. 313, 526-530 (2006).
- Nakahashi-Oda, C. Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor. J. Exp. Med. 209, 1493-1503 (2012).
- Piliponsky, A. M. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat. Med. 14, 392-398 (2008).
- Chan, C. Y., St John, A. L., Abraham, S. N. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity. 38, 349-359 (2013).
- Yu, M. Mast cells can promote the development of multiple features of chronic asthma in mice. J. Clin. Invest. 116, 1633-1641 (2006).
- Reber, L. L., Daubeuf, F., Pejler, G., Abrink, M., Frossard, N. Mast cells contribute to bleomycin-induced lung inflammation and injury in mice through a chymase/mast cell protease 4-dependent mechanism. J. Immunol. 192, 1847-1854 (2014).
- Lee, D. M. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science. 297, 1689-1692 (2002).
- Nakano, T. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/W-v. mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med. 162, 1025-1043 (1985).
- Malaviya, R., Ikeda, T., Ross, E., Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 381, 77-80 (1996).
- Lu, L. F. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 442, 997-1002 (2006).
- Tsai, M., Tam, S. Y., Wedemeyer, J., Galli, S. J. Mast cells derived from embryonic stem cells: a model system for studying the effects of genetic manipulations on mast cell development, phenotype, and function in vitro. and in vivo. Int. J. Hematol. 75, 345-349 (2002).
- Nocka, K., Buck, J., Levi, E., Besmer, P. Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J. 9, 3287-3294 (1990).
- Tsai, M. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell. Proc. Nat. Acad. Sci. U.S.A. 88, 6382-6386 (1991).
- Ronnberg, E., Calounova, G., Guss, B., Lundequist, A., Pejler, G. Granzyme D is a novel murine mast cell protease that is highly induced by multiple pathways of mast cell activation. Infect. Immun. 81, 2085-2094 (2013).
- Ito, T. Stem cell factor programs the mast cell activation phenotype. J. Immunol. 188, 5428-5437 (2012).
- Furuta, G. T., Ackerman, S. J., Lu, L., Williams, R. E., Wershil, B. K. Stem cell factor influences mast cell mediator release in response to eosinophil-derived granule major basic protein. Blood. 92, 1055-1061 (1998).
- Weller, K., Foitzik, K., Paus, R., Syska, W., Maurer, M. Mast cells are required for normal healing of skin wounds in mice. FASEB J. 20, 2366-2368 (2006).
- McLachlan, J. B. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat. Med. 14, 536-541 (2008).
- Reber, L. L. Contribution of mast cell-derived interleukin-1b to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol. 66, 2881-2891 (2014).
- Arac, A. Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice. Am. J. Pathol. 184, 2493-2504 (2014).
- Christy, A. L., Walker, M. E., Hessner, M. J., Brown, M. A. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J. autoimmun. 42, 50-61 (2013).
- Hammel, I., Lagunoff, D., Galli, S. J. Regulation of secretory granule size by the precise generation and fusion of unit granules. J. Cell. Mol. Med. 14, 1904-1916 (2010).
- Martin, T. R. Mast cell activation enhances airway responsiveness to methacholine in the mouse. J. Clin. Invest. 91, 1176-1182 (1993).
- Tanzola, M. B., Robbie-Ryan, M., Gutekunst, C. A., Brown, M. A. Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol. 171, 4385-4391 (2003).
- Wolters, P. J. Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient Kit.W-sh/W-sh. sash mice. Clin. Exp Allergy. 35, 82-88 (2005).
- Reber, L. L. Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. J. Allergy Clin. Immunol. 132, 881-888 (2013).
- Hara, M. Evidence for a role of mast cells in the evolution to congestive heart failure. J. Exp. Med. 195, 375-381 (2002).
- Abe, T., Nawa, Y. Localization of mucosal mast cells in W/W-v. mice after reconstitution with bone marrow cells or cultured mast cells, and its relation to the protective capacity to Strongyloides ratti. infection. Parasite Immunol. 9, 477-485 (1987).
- Groschwitz, K. R. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc. Nat. Acad. Sci. U.S.A. 106, 22381-22386 (2009).
- Wedemeyer, J., Galli, S. J. Decreased susceptibility of mast cell-deficient Kit.W/W-v. mice to the development of 1, 2-dimethylhydrazine-induced intestinal tumors. Lab. Invest. 85, 388-396 (2005).
- Sawaguchi, M. Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J. Immunol. 188, 1809-1818 (2012).
- Piliponsky, A. M. Mast cell-derived TNF can exacerbate mortality during severe bacterial infections in C57BL/6-Kit.W-sh/W-sh. mice. Am. J. Pathol. 176, 926-938 (2010).
- Shelburne, C. P. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe. 6, 331-342 (2009).
- Michel, A. Mast cell-deficient Kit.W-sh. 'Sash' mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells. J. Immunol. 190, 5534-5544 (2013).
- Becker, M. Genetic variation determines mast cell functions in experimental asthma. J. Immunol. 186, 7225-7231 (2011).
- Abram, C. L., Roberge, G. L., Hu, Y., Lowell, C. A. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J. Immunol. Methods. 408, 89-100 (2014).