Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

マウスの脳の側脳室における上衣繊毛のライブイメージング

Published: June 1, 2015 doi: 10.3791/52853

Summary

高解像度の微分干渉コントラスト(DIC)顕微鏡を用いて、マウス脳室の中に位置運動上衣繊毛の鼓動のex vivo観察ライブイメージングによって実証されます。技術はユニークな繊毛運動の周波数の記録や暴行角度ならびにそれらの細胞内カルシウム振動ペーシング特性を可能にします。

Abstract

Multiciliated上衣細胞は、成人の脳内脳室を裏打ちします。上衣繊毛の異常機能または構造は、様々な神経障害と関連しています。運動性上衣繊毛技術の現在のex vivoでのライブイメージングは、いくつかの手順に従って、毛様体のダイナミクスの詳細な研究を可能にします。これらの手順は次のとおりです。マウス二酸化炭素で安楽死をトレドの施設内動物管理使用委員会(IACUC)の大学のプロトコルに従って、頭蓋骨切除術は、脳の除去と上衣繊毛を可視化することができる脳側脳室を介して、非常に薄い部分を得るためにビブラトームまたは鋭利​​な刃で矢状脳解剖を行いました。 95%/ 5%Oの存在下で、2 / CO 2混合物を37℃でのダルベッコ改変イーグル培地(DMEM)/高グルコースを含むカスタマイズされたガラス底プレート中の脳のスライスのインキュベーションは、生きた組織を維持するために不可欠です間に実験。繊毛の鼓動のビデオは、高解像度の微分干渉顕微鏡を用いて記録されています。ビデオは、次に、繊毛拍動頻度を計算するために、フレーム毎に解析されます。これは彼らの繊毛運動の周波数と角度に基づいて三つのカテゴリーやタイプに上衣細胞の明確な分類を可能にします。さらに、この技術は、上衣細胞の固有の細胞内カルシウム振動特性ならびにカルシウム振動における薬剤の効果および繊毛拍動頻度を特徴付ける高速蛍光イメージング分析の使用を可能にします。また、この技術は、毛様体及び毛様体構造タンパク質の局在化研究のための免疫蛍光イメージングに適しています。これは、疾患の診断および表現型の研究において特に重要です。脳組織が死ぬことを始めると技術の主な制限は、ライブ運動性繊毛運動の減少に起因します。

Introduction

繊毛は、細胞外環境に細胞表面から延びる感覚微小管ベースの細胞小器官です。 「9 + 0」または「9 + 2 " - それらの微小管の組織に応じて、繊毛は、2つのタイプに分類することができます。機能的には、それらの運動性に基づいて、これらの運動性または非運動性繊毛1のように分類することができます。一次繊毛は、一般に「9 + 0 "非運動性繊毛を示すために使用される用語です。これらは(「9」によって示される)9平行二重微小管を有し、微小管の中心対は( '0'で示される)中心シース内に存在しません。しかし、胚の左右差を調節するような結節繊毛のようないくつかの「9 + 0」の繊毛は、2運動性です。一方、運動性繊毛は、微小管のダブレットの追加の中央対によって、9平行微小管のダブレットに加えて、特徴とし、運動性を容易にするために、ダイニンモータータンパク質に関連します。また、いくつかの「92」は、嗅覚繊毛のような繊毛は3非運動性です。脳室および脊髄の中心管の内側を覆う上衣細胞は、脳室4に沿って脳脊髄液(CSF)を推進運動性繊毛によって特徴付けられます。

この方法の全体的な目標は、運動性繊毛のダイナミクスと構造異常を研究促進することです。脳の健康と開発は多額の脳室内のCSFの効率的な循環に依存します。例えば、正常なCSFの流れおよび流体バランスは正常な鼓動ひいては神経細胞の指向性移動の調節に重要な役割を果たし、細胞遊走7幹機能上衣繊毛5,6を必要とします。このような、異常な上衣繊毛機能や構造などの水頭症に関連付けられている異常なCSFの流れにおいて、a、bの心室におけるCSFの異常な蓄積がある医学的状態につながることができます雨。この結果、頭蓋内圧亢進とヘッドの進行性肥大、痙攣、トンネルビジョン、精神障害8を引き起こす可能性があります。

独自の繊毛拍動頻度と叩解角度に基づいて、I、II、およびIII:既存の方法に対するこの手法の利点は、三つの異なる上衣細胞タイプを報告する最初の時間に許可することです。これらの上衣細胞は、脳室内の特定の領域内に局在しています。また、年齢や、上衣細胞型またはそれらのローカライズを変更することで、アルコールおよびシロスタゾールなどの薬理学的薬剤の効果は、上衣細胞のこの分類の前には不可能であった、実証することができます。シロスタゾールは、ホスホジエステラーゼ3の阻害剤、cAMPのAMPへの代謝酵素であり、それはまた、細胞内カルシウム調節する9。高速蛍光画像分析を使用して、ユニークな細胞内のイメージングおよび定量化を可能にします上衣細胞のカルシウム振動特性。例えば、アルコールおよびシロスタゾールの両方が大幅に順番に、上衣繊毛10による脳脊髄液の体積交換の変化につながる可能性上衣繊毛運動の周波数だけでなく、細胞内のカルシウム振動特性を変化させました。要約すると、この手法は、異なるカルシウム振動特性を有する上衣細胞の三つの異なる種類の最初の証拠を提供するための鍵でした。

次のセクションでは、手順の詳細なステップバイステップの概要は、組織調製および取り扱いに細心の注意を払って、提供されます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

動物使用のための手順は、国立衛生研究所と管理と使用のためのガイドでの制度的動物実験委員会のガイドラインに従ってトレド大学の施設内動物管理使用委員会(IACUC)によって承認されました実験動物の。

1.脳抽出、セクショニングおよび組織調製

  1. 深く5分間のCO 2窒息で安楽死によって、野生型マウス系統C57BL / 6を生け贄に捧げます。頸椎脱臼により死を保証します。
  2. 70%エタノールでマウスのヘッドを清掃してください。
  3. 最初の頭蓋骨を露出させるために頭の上から開始し、肌をオフに引いて、滅菌ハサミとピンセットを用いて頭蓋骨切除術を行います。
  4. その後、頭蓋骨が露出した時点で、骨の部分部分を剥離後側から開始し、前方側に移動させることで頭蓋骨を削除します。脳室を破壊しないように注意してください。
  5. 脳全体を収集します。
  6. ペニシリン10,000単位/ mlおよびストレプトマイシンと予め温め10,000μgの/ mlを含有する10%ウシ胎児血清(FBS)を補充したDMEM /高グルコースおよび1%ペニシリン/ストレプトマイシン溶液を含む100mMペトリ皿に脳を置き37℃です。
  7. 鋭利な刃で手で正中矢状面上の脳をスライスし、ビブラトームを用いて各半分から最初の100〜200ミリメートルのセクションを取得します。
  8. 予め温めた37℃のリン酸緩衝生理食塩水(1×PBS)溶液を用いて脳組織をすすぎます。
  9. すぐにメディア37℃に予熱した高グルコースDMEM /脳セクションを配置します。

2.ライブイメージング構成と​​セットアップ

  1. 高グルコースDMEM /培地1mlを含む30ミリメートルのガラス底培養皿に脳組織切片を置きます。 95%/ 10%のO 2 / CO 2含有量37°C、( 図1には、顕微鏡の密閉チャンバの環境を調整します
  2. 60X油浸対物レンズを使用して、最初の60X対物レンズで油滴を置き、定期的なDICを用いて細胞に着目して上衣細胞/繊毛画像を収集し、光を伝送されます。
  3. 繊毛殴打がエリア内に気泡の動きのようなものを作成するようにそして、運動性上衣繊毛の場所へのガイドとして、DMEMバブル移動の方向に従ってください。 DICフィルタを使用して、脳の側脳室に運動性繊毛で健康な細胞を含む領域を選択してください。上衣繊毛が発見されると、光を調整し、良好な画像を得ること焦点を合わせます。
  4. をMetamorphイメージングソフトウェアを使用して、特定の目的に応じたライブイメージングパラメータを設定します。本デモでは、60X対物レンズと、5〜10ミリ秒の露光時間と合わせ、1×1のカメラビニングを設定して24ビットの画像を取得します。
  5. 最小EXPを得るために最適なレベルに顕微鏡開口部を開くことにより、DIC画像を収集osure時間。遅滞なく迅速かつ即時の画像取得を提供するために、カメラにライブ映像ストリームを確認します。十分な画像コントラストを得るために、最小限の露光時間の要件に基づいて、繊毛の鼓動の速度を計算します。

3.データの可視化と分析

  1. 1分で殴打数をカウントすることにより繊毛の殴打の数を計算します。ビデオの速度を減少させ、細胞カウンターまたは同様のツールを使用して、拍数をカウントすることによってこれを行います。
  2. 殴打の頻度を計算するために、ビデオは秒数を取得し、取得したフレームまたはタイムラプス画像の数によって記録された露光時間を乗算します。 (例:露光時間5ミリ秒200フレーム=千ミリ秒または1秒)。
  3. 1秒あたりの鼓動の数として表現さ​​れる周波数を得るために、1秒間に殴打の数を計算します。 1秒のタイム間にわたって繊毛殴打の数を割ることによってこれを行いますvalが(例:繊毛= 1秒5ミリ秒、すなわち 5ミリ×200フレームの露光時間で記録された200枚の映像で50回を打つが、今1秒= 50 Hzの50ビートを分割します)。
  4. 両方の電源と回復ストローク中に上衣繊毛によって撮影されたパスを評価することにより、繊毛運動の角度を計算します。小さ ​​な修正11で、前述した方法に従って、これを実行します。個々の繊毛の正確な動きは、完全な拍動サイクル中に観察されます。
  5. モニターの上に配置アセテートシートで、上衣エッジとパワーストロークの開始時の繊毛の正中位置を通る垂直線に沿って水平線を描画します。
  6. それは動力行程中に前進するように、フレームによって繊毛フレームの正確な位置をプロットします。同様に、回復ストローク中に繊毛の動きをプロット。
  7. T中の正中線から繊毛の最大偏差から繊毛運動の角度を計算します彼のパワーストロークだけでなく、回復ストローク。

4.カルシウム信号記録

  1. 脳をスライスした後、簡単に1×PBSまたはダルベッコPBS(pH7.0)で脳切片をすすぎます。蛍光消光を回避するために、良好な信号対雑音比を得るために、新鮮なのFluo-2を調製します。
  2. 、ジメチルスルホキシド(DMSO)中のFluo-2溶液の1mMストック溶液を調製し、混合のFluo-2が均一DMSOに溶解されていることを確認するために、少なくとも5分間、溶液をボルテックス。
  3. 20 mg / mlの最終濃度まで37℃に2%のB27を暖め予め添加したDMEM /高グルコース500ml中のFluo-2ストック溶液を希釈します。
    注:B-27は、ビタミンA、酸化防止剤カクテルおよび海馬および他のCNSニューロンの短期または長期の生存性をサポートするために使用されるインスリンを含む最適化された無血清サプリメントです。
  4. 直ちにガラス底プレート中で、37℃で30分間、20 mg / mlでのFluo-2で脳切片をインキュベートします。
  5. カルシウムフルオロフォアのFluo-2の最適添加濃度を決定するためにカルシウム色素細胞毒性を回避するために、ATPでのチャレンジ細胞、およびATPに応答してカルシウムシグナルの時間経過およびピークの大きさを決定することによって、細胞の生存率をチェックします。
  6. 488 nmおよび515 nmで、それぞれ( 動画2)の励起波長および発光波長で、1秒(毎秒200フレーム)の最低5ミリ秒のキャプチャ速度でカルシウム振動のための映像を記録します。
  7. 自家蛍光や動きアーチファクトからのFluo-2カルシウム信号を区別するために、515 nmで放出された強度を別々に監視されていることを確認。
    注:フルオ-2は、細胞内カルシウムを定量化するのに適したカルシウムfluoremetricではありません。しかし、このようなカルシウム振動の速カルシウムの変化を検出するための優れた動的カルシウム色素です。より正確なカルシウム定量のために、フラ-2を推奨します。しかし、フラ-2の動的変化は、そのレシオメトリックによって制限されています染料の性質。
  8. 正確な無料の細胞内カルシウム値を計算するために、製造業者によって提供される式に従ってください。例の[Ca 2+] = K d×(R - R )/(R 最大 - R)。 K dはカルシウム放出された色素からの解離定数である場合、Rは、488で、測定された蛍光であり、そしてR minおよびR maxは、最小および最大のイオン濃度12で蛍光比です。

5.免疫蛍光顕微鏡

  1. 4%パラホルムアルデヒド(PFA)で10分間、2%スクロースを含有するリン酸緩衝生理食塩水を用いて脳切片を固定します。あるいは、4%PFAで脳全体を修正してから、クライオスタットを用いて、50ミリメートルのセクションにセクション。
  2. 毎回5分間、1×PBSで組織を3回洗浄します。
  3. solutiで脳切片をインキュベート5分間1×PBSで各回3回すすぎ、次いで5分間、1×PBS中0.1%のTriton-Xの上で、。
  4. 室温(RT)で、または一晩、4℃で1時間、1×PBS中10%FBS中で5,000:マウス一次抗体を用いて脳切片をインキュベートし、1の希釈で用い、チューブリンをantiacetylated。
  5. 毎回5分間、1×PBSで組織を3回洗浄します。
  6. 1の希釈で二次抗体で脳切片をインキュベートし、フルオレセイン抗マウスIgG:RTで1時間、1×PBS溶液中で、10%FBS中で500。
  7. 5分は、核(またはDNA)13を染色するための4 '、6-ジアミジノ-2-フェニルインドール(DAPI)のセクション対比蛍光顕微鏡下で観察する前に。可能な最小露光時間で光退色、画像すぐにセクションを最小限に抑えます。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

生きたマウスの脳において上衣繊毛機能の測定

このプロトコールに記載された方法は、マウス脳から切除新鮮組織における上衣繊毛の機能と構造を監視するため、並びに繊毛拍動頻度を監視し、研究するために使用されます。完全な実験を遂行するために、その後の工程は、概略フローチャート(図1)に示されています。それは非常に実験が可能な限り積極的な運動性繊毛を維持するために、短い時間枠内で実施されることをお勧めします。代表的なタイムラプスムービーと上衣細胞とその運動性繊毛の画像も表示されます(動画1 そして図2a)。得られたストリーム内のデータの分析は、移動繊毛の鼓動と角度パターンを計数することにより達成されます。三種類に繊毛を分割するための基準は、上衣繊毛の存在はconfiで表1に提示されています-チューブリンアセチル化繊毛マーカーでrmed、および上衣細胞は、核(図2b)を示すためにDAPI(DNAマーカー)で対比されています。少なくとも22の独立した実験からの脳側脳室における上衣細胞の我々の観察に基づいて、我々は彼らの繊毛運動の周波数に基づいて3種類に上衣細胞を分類することができました。さらに、我々は、0.25%濃度のエタノールを大幅に関係なく、そのタイプ( 図3)の繊毛拍動頻度を抑制することを実証しました。さらに重要なことに、これらのデータは、我々の以前の発見10と整合性です。

上衣繊毛によってカルシウムシグナル伝達を測定します

これは、以前に、繊毛の曲げ14-16シグナリング繊毛依存性細胞内カルシウムを誘発できることが示されています。この技術は、研究者が検討し、脳室中に細胞内カルシウムシグナルを測定することを可能にします >(動画2).Oneは上衣繊毛の活性化に応答して、又は薬理学的薬剤を用いた治療に反応して細胞質カルシウム振動を記録するために同様の方法論を適用することができます。細胞質カルシウムを調べるために、組織は、カルシウム指示薬、フルオ-2とともに37℃で30分間インキュベートします。細胞質カルシウム振動/レベルのライブ画像は、それぞれ、488および515 nmでの励起および発光波長でストリーミングされています。

図1
図1:上衣繊毛イメージングプロトコルフローチャート上衣繊毛イメージングプロトコルは、マウスbrainextraction、セクショニングと画像取得と分析に組織調製物から出発し、実験を完了するためのステップを示す図です。おおよそ1時間のタイムラインは、ステップバイステップの手順が提示されます。

E 2 "SRC =" /ファイル/ ftp_upload / 52853 / 52853fig2.jpg "/>
図2:脳室における上衣繊毛局在ここに示されているが、マウスの脳の側脳室から上衣細胞です。 (a)個体上衣細胞(下の矢印)と繊毛(上矢印)のDIC画像を示します。 (b)脳切片のオーバーレイ画像が繊毛マーカーに対する抗体で染色され、緑色(上矢印)に示すように、チューブリンのアセチル化、及び青(下矢印)に示す核/ DNAマーカー、DAPIで対比染色。パネルAおよびBは、異なる脳切片を表していることに注意してください。

図3
図3:アルコールおよびマウス脳側脳室の上衣細胞の種類の中の繊毛の鼓動周波数の違い ex vivoでの脳切片は(制御)することなく、または(Eと共にインキュベートしましたthanol)5分間、0.25%のアルコール。アスタリスクで示したように、制御、アルコール処理と比較して有意に、繊毛拍動頻度を減少させました。少なくとも5-10の独立の調製物は、それぞれの上衣細胞型と処置群に使用しました。

映画 1:III型上衣細胞における上衣繊毛の記録ここに示されている脳の第三脳室からIII上衣細胞を入力するために、周波数とユニークな角度を打つことによって特徴づけられる上衣繊毛の記録がありますこの図は、以前に10を報告されており、その許諾を得て再掲しました。

ムービー 2:上衣細胞における細胞内カルシウム振動ここに示されている脳の横VENの部分を通って上衣細胞のカルシウム振動の録音をしています37℃で30分間、20 mg / mlのカルシウム指示薬フルオ2で脳切片をインキュベートした後tricle。脳切片のカルシウムレベルを研究し、擬似着色しました。カラーバーは、上衣細胞のカルシウムレベルを示します。ここで、紫、黒と赤、黄色、それぞれ、低および高カルシウムレベルを表します。プロトコルのテキストで述べたように、細胞内カルシウムの定量化のために、上衣細胞のカルシウムは、いくつかの個々の上衣細胞から計算され、対照群と投与群との間で平均しました。カルシウム振動のビデオを、それぞれ488 nmおよび515 nmでの励起および発光波長で毎秒200フレームで記録しました。この図は、以前に10を報告されており、その許諾を得て再掲しました。

上衣細胞型 繊毛の鼓動周波数 繊毛の鼓動角
タイプI > 60ヘルツ <90°
タイプII 30〜60 Hzの 90から135°
タイプIII <30ヘルツ > 135°

表1:上衣繊毛の種類上衣繊毛の分類タイプに私は、IIまたはIIIは、主に脳の第三脳室の異なる領域内に位置する上衣繊毛の拍動周波数と鼓動角度に基づいていました。このデータの一部は、以前に報告されており、許可を得て、ここで再利用されました。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ライブイメージングおよび脳室上衣内繊毛の迅速かつ高感度近接観察を提供し、蛍光顕微鏡の両方のマウス脳組織の調製のためのプロトコールは、ここで説明します。この技術は、側脳室のみに限定されません。それは、他の脳室に繊毛を観察するために利用することができます。このイメージング技術は、ex vivo環境で繊毛運動によってCSFの動きに似ているライブストリームを提供します。また、繊毛の方向の動きの分析を可能にします。これは主に、高解像度DICおよび蛍光画像化システムを使用することによって促進されます。このシステムの利点は、顕微鏡は、温度、湿度、CO 2レベルの微調整を可能にする環境チャンバー内に封入されているということです。これらは、ライブイメージングEXPERを行う際に、細胞および組織の生存のために考慮すべき非常に重要なパラメータであります形態。システムはまた、繊毛の動きなどの動的な細胞の挙動のイメージングを容易にするための重要な特徴であるそのすべてが、自動XYとZモジュールだけでなく、デジタルカメラや波長フィルタ切替が装備されています。顕微鏡は、コンピュータに接続され、高品質な画像の取得は、ソフトウェアを撮像することによって促進されます。

別個の種類に上衣細胞を分類するためにこの技術を使用すると、上衣繊毛を研究するために使用される既存の/前の方法に比べて著しい進歩を提供しています。上衣細胞は、1つの集団17とみなされる場合、例えば、アルコール等のある種の薬理学的または毒性剤の効果は、そうでなければ最小化または無効化することができます。これは、周波数と角度を破って繊毛の特性が上衣繊毛これら3つのタイプの間で非常に異なっているという事実にもかかわらず、私たちはこれらの細胞の生理機能を理解するために開始した、心に留めておくことが重要です。従ってこのプロトコルで説明された手順が正しく行われている場合、私たちの以前の研究によれば、我々の分類は十分に強固です。

個別の上衣繊毛を特定することが上衣生理学の基本的な理解を得るために基本的に重要です。この方法は、3つの異なるタイプ( 表1)に分類をもたらす、一意具体的ビーティング周波数および角度に関して第三脳室上衣細胞内に位置する3つの異なるタイプを区別することを可能にします。繊毛の鼓動周波数の違いは上衣細胞の生存率または動物の年齢の違いの違いによるものではないことを確認するためには、神経組織にとで接続されていることだけ無傷で切り離さ上衣ストリップまたはスライスすることをお勧めします厚さの100mm以上が使用されます。また、繊毛拍動頻度は、各上衣部に沿って異なる位置で測定されるべきです。我々は以前にこの技術を使用して生成さ繊毛ビート周波数データ87実験的観察10の間一貫して再現可能であったことを実証しました。したがって、上衣細胞は正確に繊毛運動に応じて分類されています。繊毛運動の頻度を減少させることが知られている薬剤を使用した場合また、繊毛の鼓動周波数は、理論的には、それらの薬理学的物質を除去した後、通常のビーティング周波数に戻ります。

このプロトコルにおける重要なステップは、脳組織および実験を完了するのに必要な時間を処理に主として関連しています。これは、上衣繊毛の構造および機能を維持するだけでなく、脆弱な組織への外傷を低減するために、穏やかに、脳組織を処理するために不可欠です。もっと重要なのは、この技術の成功のための制限因子であり得る脳組織の劣化や死を回避するために、それは非常にrecommendeありますこの技術に関連するステップはできるだけ1に近い時間で行われるD。しかし、この制限は、 インビトロまたは代替栄養培地を用いて、運動性繊毛との培養および成長上衣または類似の細胞型の進歩と将来的に克服することができました。そのようなaCSFの脳切片のインキュベーションアール塩代替栄養培地の使用は文献5に示されています。しかし、私たちの手で、DMEM /高グルコースの使用は、潜在的なエネルギー源として培地中のグルコースの高い量(4,500 mg / mlの)の存在のために、おそらくaCSFのより有益でした。このように、主な基準は、組織の生存率を評価するために使用され、これは生細胞の代表的な兆候であるように、従って手法の妥当性は、繊毛の鼓動を評価されています。

上衣繊毛のライブイメージングは​​繊毛活性化の下流のシグナル伝達経路を分析するための強力なツールを提供していますこのようなカルシウムシグナル伝達と振動など。例えば、生の蛍光画像を用いて、それにかかわらず上衣細胞/繊毛型、上衣細胞は、固有のカルシウム振動特性10によって特徴づけられることが実証されています。すべてのすべてで、このプロトコルは、基本的な科学的知識と臨床実践の両方に関連します。基礎科学の観点から、この手法は、上衣繊毛構造、機能、および下流の機構的なシグナル伝達経路の機能と生理的役割の評価を提供しています。臨床実践の観点から、この方法は、水頭症やアルコールの乱用などの神経疾患の新たな治療標的として上衣繊毛を標的とする薬剤の探索に非常に関連しています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

利害の衝突は宣言されていません。

Materials

Name Company Catalog Number Comments
DMEM/HIGH GLUCOSE Cellgro Mediatech Inc. 10-013-CV
Fetal bovine serum (FBS) Hyclone SH30088-03
Penicillin/Streptomycin Thermo Scientific SV30010
Phosphate buffered saline Thermo Scientific SH30256-01
Paraformaldehyde  Electron Microscopy Sciences 15710-SP
Sucrose Sigma-Aldrich S-2395
Triton-X Sigma-Aldrich T9284
Fluo-2  TEF Labs #0200
DMSO
B27 Gibco 17504044
VECTASHIELD HardSet Mounting Medium with DAPI Vector Labs H-1500
Anti-acetylated a-tubulin antibody Sigma-Aldrich T7451  clone 6-11B1
FITC Anti-mouse antibody Vector Labs FI-2000
Cell Culture plate VWR Vista Vision 30-2041
Cover Slip (18 x 18) VWR Vista Vision 16004.326
Vibratome Leica Biosystems Leica VT1200S
Cryostat Leica Biosystems Leica CM1860
Inverted Fluorescence Microscope Nikon  Nikon TE2000 60X oil 
Microscope cover glass 24 x 60 mm2 VWR Vista Vision 16004-312
Mounting Medium with DAPI Vector Laboratories H-1500
DAPI filter cube Chroma Technology

DOWNLOAD MATERIALS LIST

References

  1. AbouAlaiwi, W. A., Lo, S. T., Nauli, S. M. Primary cilia: Highly sophisticated biological sensors. Sensors. 9 (9), 7003-7020 (2009).
  2. Nonaka, S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking kif3b motor protein. Cell. 95 (6), 829-837 (1998).
  3. Satir, P., Christensen, S. T. Overview of structure and function of mammalian cilia. Annual review of physiology. 69, 377-400 (2007).
  4. Delbigio, M. R. The ependyma - a protective barrier between brain and cerebrospinal-fluid. Glia. 14 (1), 1-13 (1995).
  5. Genzen, J. R., Platel, J. C., Rubio, M. E. Bordey A. Ependymal cells along the lateral ventricle express functional p2x(7) receptors. Purinergic signalling. 5 (3), 299-307 (2009).
  6. Appelbe, O. K., et al. Disruption of the mouse jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. Developmental biology. 382 (1), 172-185 (2013).
  7. Sawamoto, K., et al. New neurons follow the flow of cerebrospinal fluid in the adult brain (New York, N.Y.). Science. 311 (5761), 629-632 (2006).
  8. Banizs, B., et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 132 (23), 5329-5339 (2005).
  9. Kawanabe, Y., et al. Cilostazol prevents endothelin-induced smooth muscle constriction and proliferation. PloS one. 7 (9), e44476 (2012).
  10. Liu, T., Jin, X., Prasad, R. M., Sari, Y., Nauli, S. M. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties. J Neurosci Res. 92 (9), 1199-1204 (2014).
  11. Chilvers, M. A., O'Callaghan, C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax. 55 (4), 314-317 (2000).
  12. Nauli, S. M., Jin, X., AbouAlaiwi, W. A., El-Jouni, W., Su, X., Zhou, J. Non-motile primary cilia as fluid shear stress mechanosensors. Methods in enzymology. 525, 1-20 (2013).
  13. AbouAlaiwi, W. A., et al. Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation. 129 (6), 660-672 (2014).
  14. AbouAlaiwi, W. A., et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circulation research. 104 (7), 860-869 (2009).
  15. Jin, X., et al. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci. 71 (11), 2165-2178 (2014).
  16. Praetorius, H. A., Spring, K. R. Bending the mdck cell primary cilium increases intracellular calcium. The Journal of membrane biology. 184 (1), 71-79 (2001).
  17. Smith, C. M., Radhakrishnan, P., Sikand, K., O'Callaghan, C. The effect of ethanol and acetaldehyde on brain ependymal and respiratory ciliary beat frequency. Cilia. 2 (1), 5 (2013).

Tags

神経科学、問題100、運動性繊毛、側脳室、脳脊髄液、ライブイメージング、水頭。
マウスの脳の側脳室における上衣繊毛のライブイメージング
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Al Omran, A. J., Saternos, H. C.,More

Al Omran, A. J., Saternos, H. C., Liu, T., Nauli, S. M., AbouAlaiwi, W. A. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain. J. Vis. Exp. (100), e52853, doi:10.3791/52853 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter