Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

三次元画像と人間の表皮内神経線維内のミトコンドリアの解析

Published: September 29, 2017 doi: 10.3791/53369

Summary

このプロトコルは、神経固有のミトコンドリアを定量化を視覚化して三次元 (3 D) 画像処理・解析技術を使用します。テクニックは別の蛍光信号からデータのサブセットを分離する 1 つの蛍光信号が使用されている場合に適用されます。

Abstract

このプロトコルの目的は、表皮内神経線維内のミトコンドリアを勉強することです。したがって、神経固有のミトコンドリアを分離し、感覚神経の遠位先端のミトコンドリアの病気による変化を評価する 3 D 画像処理・解析技術が開発されました。プロトコルは、蛍光免疫組織化学、共焦点顕微鏡と神経固有のミトコンドリアを定量化を視覚化して 3 D 画像解析手法を組み合わせたものです。詳細なパラメーターは、神経固有のミトコンドリアを分離するこれらのテクニックを使用する方法の具体的な例を提供するために手順の中で定義されます。抗体を用いて神経をラベルし、皮膚の組織切片内ミトコンドリア信号パンチ生検、それぞれ緑、赤の蛍光シグナルとミトコンドリア神経を視覚化する間接蛍光抗体法が続いています。Z シリーズ画像を共焦点顕微鏡で取得した、3 D 解析ソフトウェアが処理し、信号を分析する使用されました。記述されている正確なパラメーターに準拠する必要はありませんが、染色、集録・解析手順全体の選択のものと一致することが重要です。このプロトコルの強さださまざまな状況に適用されるそれ以外の場合、一人で勉強することが可能となるだろう他の信号を分離する 1 つの蛍光信号が使用されています。

Introduction

ミトコンドリアは、バッファリング、カルシウムと規制壊死とアポトーシス細胞死1,2,3セルのエネルギーを生産を含む重要な細胞機能を提供します。中枢神経系は、ミトコンドリア呼吸を介してニューロンがアデノシン三リン酸 (ATP) の形で高度の細胞のエネルギーを生成することを示唆している体4と比較して高い代謝率は。多くの神経機能が ATP5、特にシナプス6に依存していること証拠書類。したがって、神経細胞内のミトコンドリアの分布は重要です。

最後の 10 年間で多くの情報が示している人身売買および神経細胞のミトコンドリアのドッキングは非常に調整されます。モーター蛋白質ニューロンを通して特定の細胞コンパートメントにミトコンドリアの配布に関与しています。ミトコンドリアの人身売買は、ニューロンの軸索と樹状突起、相馬から遠く離れたプロジェクトのために特に重要です。キネシン モーター蛋白質は主に (相馬) から前向性ダイニン モーター蛋白質直接 (相馬) に向かって逆行運動7,8,9ながら微小管に沿ってミトコンドリアの人身売買を直接します。,10です。 このようなミトコンドリア膜電位とインパルス伝導存在とミトコンドリア人身売買11,12,13の方向に影響を与える携帯電話の信号があります。

ミトコンドリアを輸送に加えて Ranvier のノードやシナプス8,14,などの高エネルギー要求がある特定の細胞コンパートメントにミトコンドリアをローカライズするのには特殊な蛋白質があります。17します。 実際には、軸索内のミトコンドリアの大半が非運動性9,13,18。アクチン細胞骨格19-21に他の蛋白質アンカーのミトコンドリア中の軸索に沿って微小管の syntaphilin アンカー ミトコンドリアのような専門にされた蛋白質。成長因子およびカルシウムなどのイオンは、ミトコンドリアが必要な21,22,23の地域にローカライズするため運動の停止をサポートする報告されています。

一緒に取られて、人身売買とミトコンドリアのドッキングがニューロンの適切な機能のために不可欠です。、これを支持するミトコンドリア輸送の混乱が関連付けられているアルツハイマー病、筋萎縮性側索硬化症、シャルコー ・ マリー ・ トゥース病、ハンチントン病、遺伝性痙性を含むいくつかの神経学的な条件対麻痺、視神経萎縮15,24,25,26,27.最近の研究が糖尿病神経障害、糖尿病28,29,30,31 に関連付けられている感覚の損失のための潜在的なメカニズムとしてミトコンドリアの機能低下と病理に焦点を当ててください。 ,32,33。仮説は、糖尿病が皮膚神経の感覚の投射内ミトコンドリアの分布を変更します。したがって、視覚化し、表皮内神経線維 (IENFs)、後根神経節感覚求心性神経の遠位先端内ミトコンドリアを定量化する技術が開発されました。技法を組み合わせた神経固有の分布を測定する強力な 3 D 画像解析ソフトウェアで信号の共焦点顕微鏡 z シリーズ取得特定のミトコンドリアと神経線維のラベルの蛍光免疫組織化学この目標を達成するために人間の皮膚パンチ生検からミトコンドリア。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

皮膚パンチ生検はユタ大学糖尿病センター (ソルト レイク シティ, ユタ州) で大規模な地域密着型のプライマリ ・ ケア ネットワークから募集された被験者から得られました。本研究はミシガン大学制度検討委員会で承認され、ヘルシンキ宣言の原則を遵守します。テスト前に各教科からインフォームド コンセントを得たクチします

1 蛍光免疫組織化学

  1. 表皮内神経線維の免疫組織化学の準備パンチ生検: 医療機関
    1. 実行 3 mm 皮膚生検スタッフと 1.5 で全体の生検を配置。mL Zamboni ' 4 ° c 一晩固定液 (2% パラホルムアルデヒド、リン酸緩衝生理食塩水 (PBS)、pH 7.4 0.3% 飽和ピクリン酸) を s.
    2. 30% ショ糖溶液でサンプルを PBS で 16 24 h またはサンプルが沈むまで 4 ° C でリンスします
    3. 最適な切削温度の埋め込みサンプル化合物 (10 月)、cryomold を使用して。金型で下向き表皮全体 3 mm 生検を置き、約 2 ml 10 月凍結砕いたドライアイスの金型の金型をご記入します。-80 ° c を使用する準備ができるまでストア
    4. カット 50 μ m 厚クライオスタットを用いた断面し、(30% エチレング リコール, PBS で 30% のグリセロール) ウェルあたり 180 μ L 不凍液・ ストレージ ・ ソリューションを使用して 96 ウェル プレートの個々 の井戸に格納します。次の方向は、96 well プレートの 8 井戸です。互いからの 200-300 μ m の各生検からセクションを染色します

1 日目:

  1. 角質層の非固有のラベルを消す:
    1. ラベル 96年ウェル プレート の図 1 に示すよう
    2. ピペット 150 μ L を各ウェルに二次抗体 34 , 35 の非特異的結合を減らすために標準的なシグナル エンハンサー ソリューションの。接種したループを使用して信号の増強物ソリューションのセクションに転送します
      。 注意: 損傷またはティッシュ セクションを引き裂くことを避けるために組織で作業しながら注意してください。フラット ロッカーに室温で 30 分間信号エンハンサー ソリューションに保つ
    3. 行 2、3 96 ウェル プレートの各ウェルにリン酸緩衝生理食塩水 (PBS) x 1 の 150 μ L を追加することによって井戸における準備リンスします
    4. 行 2 および室温で 10 分の 1 × PBS で洗浄に慎重にセクションを転送します
    5. 室温 (3 行目) で 10 分の 1 × PBS で 2 回リンスします
  2. 5% ウシ血清アルブミン (BSA) をソリューションをブロックの準備:
    1. 準備 5 %bsa を含む解決を妨げる 5%、0.3% トリトン X 100 (テキサス州-100) 0.1 M PBS (表 1 参照) のセクション中に培養が信号エンハンサー ソリューションです。BSA はいかないソリューションに簡単に。渦解 BSA が完全に溶けるまで
    2. 5 %bsa を各ウェルにソリューションをブロックの 150 μ L を追加することによって 96 ウェル プレートの 4 行目にブロックの井戸を準備します
    3. ソリューションをブロック 5 %bsa の個々 の井戸にセクションを転送し、5 %bsa フラット ロッカーに室温で 1-2 時間のためのソリューションをブロック内のセクションをインキュベートします
  3. ソリューションや一次抗体の希釈洗浄 1 %bsa を準備:
    1. 0.3% と 1 %bsa を含む準備 1% の洗浄ソリューション テキサス州-100 0.1 M PBS ( 2 参照) 中のセクションが5 %bsa ブロッキング溶液で培養されます。BSA はいかないソリューションに簡単に。渦解 BSA が完全に溶けるまで
    2. は、セクションが 5 %bsa ブロッキング溶液で培養しながら 1 %bsa 洗浄ソリューションで一次抗体を希釈します。
      1. 第一抗体溶解液の 1,500 μ L を行い各追加行 5 にも
      2. 一次抗体の希釈: 1:1, 000 の神経固有のラベル、ウサギ ポリクローナル抗蛋白遺伝子産物 9.5 (PGP9.5) を使用します。ミトコンドリア固有のラベルを使用して、マウスのモノクローナル抗体抗ピルビン酸脱水素酵素 E2/E3bp 抗体 (PDH) リンス液 1 %bsa で 1: 100 です
  4. 準備一次抗体:
    1. 各一次抗体のピペット 150 μ L でよく 96 ウェル プレートの 5 の行
    2. 一次抗体を含む 5 行にブロッキング液 (行 4) からセクションを転送ループ ツールを使用します
    3. 完全に乾くことから保つためにパラフィルムでしっかり板をラップします
    4. 1 時間室温でフラット ロッカーにサンプルを置き、フラット ロッカーの 4 ° C でのサンプルを一晩インキュベートします

2 日目:

  1. リンス サンプル:
    1. 行 6、7 および 8 リンス液を各ウェルに 1 %bsa の 150 μ L を追加することによって 96 ウェル プレートの準備リンス井戸
    2. は、最初 1 %bsa 洗浄ソリューション (6 行目) にセクションを転送し、室温で 1 時間インキュベートします。室温で行 7 と 1 h の 8 のリンス液 1 %bsa のセクションの孵化によってさらに 2 回すすぎを繰り返します
  2. リンス液 1 %bsa の二次抗体を希釈:
    1. 二次抗体の解決のセクションはリンス液 (行 8) 1 %bsa の最後のすすぎに培養中の作る 1,500 μ L.
    2. 二次抗体を希釈: PGP9.5 (緑色蛍光共役ヤギ抗うさぎ抗体、1: 1000)、リンス液 1 %bsa の PDH (赤蛍光共役ヤギ抗マウス、1:1, 000) のためのです
  3. 準備二次抗体:
    1. 96 ウェル プレートの 9 行目に二次抗体のピペット 150 μ L.
    2. リンス液 (行 8) 二次抗体の井戸 (9 行) に 1 %bsa からセクションを優しく転送します
    3. 使用パラフィルム、ラップ プレートをしっかりと乾燥からそれを維持します。アルミ箔でカバーします。1 時間室温でフラット ロッカーにサンプルを置き、フラット ロッカーの 4 ° C でのサンプルを一晩インキュベートします

3 日目:

  1. 準備は、0.22 μ m フィルターをフィルタ リングによって 1x PBS をきれい:
    1. ピペット 150 μ L の 10、11、および 12 の行に 1x PBS をフィルタ リングします
    2. は、10 の行にサンプルを転送し、室温で 1 h の 1x PBS で洗浄します。カバーをアルミ箔の 96 ウェル プレート、フラット ロッカーにリンスの中に。繰り返しフィルター 2 つ PBS すすぎ × 1 回以上行 11 と 12 の室温で 1 h.
  2. ティッシュ セクションをマウントするための顕微鏡のスライドの準備:
    1. の場所 50 μ L フィルター スライドの 1x PBS
    2. 転送セクション、50 に 1 × PBS (行 12) から μ をドロップします。慎重に組織を展開し、優しくスライド ガラス上に平坦で PBS のドロップでセクションを配置します。取付試薬を希釈することを避けるためにガラス ピペットで余分な PBS を削除します。ガラス球のセクションに触れないで
    3. 。 セクションの方向を邪魔しないようにケアは
    4. ピペット 1 - 顕微鏡スライドを使用してセクションの上に直接 DAPI を含むマウント試薬 2 滴。優しく、部分に 50 ミリメートルの x 24 ミリメートル #1.5 顕微鏡ガラス基板を配置します
    5. は、coverslip を配置しながら形成される任意の気泡をクリアし、カバーガラスの端に余分な液体を拭いてください。新しいスライドを準備し、実装 pr を繰り返します各セクションから始めます
    6. 治療法/ドライ暗い一晩常温でスライドを配置することによってメディアをマウントします。スライドを短期 (1-2 週間) または-20 ° C (2 週間以上) の長期保存のための 4 ° C に転送します
      。 注: ネガティブ コントロール ステップ 1.4.2.2 PGP9.5 または PDH の一次抗体を省略すると、神経や表皮内のミトコンドリアの識別ラベルは表示されません。コントロールを行った肯定的な PDH のためそれを証明するために抗体ラベルすべてミトコンドリア (データは示されていない)。緑色蛍光タンパク質 (GFP) 信号ラベル ミトコンドリア バキュロ ウイルスで導入した固定、PDH 抗体と赤い蛍光染色し、培養マウス後根神経節ニューロンのポジティブ コントロールを行った二次抗体。GFP を表現していたすべてのミトコンドリアが共同 PDH 免疫組織化学 (データは示されていない) の赤ラベルのラベルが付いた

2。共焦点イメージング

  1. 共焦点イメージングを実行: レーザ共焦点顕微鏡倒立顕微鏡に油浸型 (1.25 の開口 (エヌ)) 目的 X 40
    1. 収集画像。
      1. 各焦点面で順次取得蛍光信号:
        核: 励起 λ = 405 nm、スペクトルエ ミッション フィルター λ = 420-480 nm
        神経線維: 励起 λ = 488 nm、スペクトルエ ミッション フィルター λ = 505 560 nm
        Mitochondria: 励起 λ = 543 nm、スペクトルエ ミッション フィルター λ = 606 670 nm
    2. 顕微鏡ソフトウェアに以下のスキャン パラメーターを入力: 2 階調と 2.2; ズーム 600 Hz のスキャン レート 12 ビット強度分解能 (4096 灰色レベル)。
      1. 設定最適化された横方向分解能の顕微鏡のソフトウェア (スキャン解像度 1,024 × 1,024 =) および軸分解能/光学区分および (共焦点絞り z ステップ サイズが 210 の 1 風通しの良い単位 (AU) を = nm).
        注: 結果の XYZ の解像度は 172.2 x 30-50 μ m × 176.1 μ m × 176.1 μ m のイメージ サイズ 172.2 nm x 210 nm nm
    3. 神経信号 (蛍光グリーン) ライブ スキャンを有効にし、z フォーカス コントロールは検出し、上限を設定を調整組織切片中の神経信号を包含する顕微鏡のソフトウェアに焦点面を下げる。Z の全範囲は、50 μ m の切片の 30-50 μ m.
    4. 表皮がイメージ内で水平または垂直に表示されるよう、ライブ スキャン中に顕微鏡のソフトウェアとスキャン フィールドを回転します
    5. 各信号を別々 にスキャンし、検出器 (光電子増倍管 PMT) を調整電圧といずれか以上と飽和ピクセル下の最小化/削除するオフセット
      。 注: 上記のパラメーターをスキャン時間がかかる z スライス数に応じて約 20-40 分

3. 3 D の可視化とミトコンドリアの解析ひと表皮内神経線維内

  1. 3 D の表皮を分離:
    1. 元の画像を複製し、最大強度を使用します。特定して表皮を分離するイメージの投影 (拡張フォーカス表示).
    2. 欠席している角質層や真皮など不要な部分を削除する表皮の上部と下部のエッジに沿ってトレースする関心ツールの領域を使用して表皮内神経線維の。この選択範囲で切り抜きします
  2. 神経とミトコンドリア蛍光信号のデコンボリューションを使用:
    注: デコンボリューション蛍光信号の整合性を復元することができます。イメージの蛍光信号を使用して元のソースから信号がどのくらい分散を決定するため、このプロトコルで使用される復元はブラインド ・ デコンボリューションを呼びます (点拡がり関数)。プロセスは、その起源の場所に広がる信号の再割り当てによって信号の解像度を向上します。
    1. 計算点広がり関数 (PSF) 緑蛍光神経信号 (蛍光グリーン) の次のパラメーターで:
      1. に計算される PSF を設定、共焦点。中間屈折を 1.25 に 1.515 と数値の絞りに設定します。ピンホール検出器を 1 風通しの良いユニット (A.U.) に設定します。515 に 488 nm、発光波長に設定レーザー励起波長 nm
    2. 次のパラメーターで赤い蛍光ミトコンドリア信号 (赤色蛍光) の PSF を計算:
      1. セット共に PSF を計算されます。中間屈折を 1.25 に 1.515 と数値の絞りに設定します。ピンホール検出器を 1 に設定 AU。617 543 nm、発光波長に設定レーザー励起波長 nm
    3. 対応する Psf デコンボリューションによる神経とミトコンドリア蛍光信号が上記の最適化および反復的な復元機能は 100% の自信で 10 サイクルの反復制限設定します
  3. 神経固有のサーフェスを作成する:
    1. 使用、" サーフェスを作成 " 逆算緑色蛍光セカンダリのラベリング、PGP9.5 から神経の固体表面を作るためのツールは、神経を識別
    2. チェック ボックスをオフ、" 滑らかな " 機能し、絶対強度機能を使用して、バック グラウンド蛍光よりも大幅に明るいのだから神経信号のしきい値を設定します
    3. では、絶対強度機能を使用して、バック グラウンド蛍光よりも大幅に明るいのだから神経信号に閾値を設定します。神経を正確に識別するために十分に低いしきい値を設定します
    4. 。 小さな、非神経の表面を
    5. フィルター サイズに基づいています
      。 注: 必要に応じて、手動で編集内で追加の非神経の表面を " 編集 " により、複数のオブジェクトをハイライト表示するコントロール キーを押しながら、Del キーで削除するタブ
  4. 分離神経固有蛍光ミトコンドリア信号:
    1. を表示する神経表面の編集タブを選択、" マスクのプロパティ " 機能。ケラチノ サイトに関連付けられているミトコンドリアの信号から離れてそれらの神経内ミトコンドリアを分離する神経で 3.3 の手順で作成したサーフェスを使用します
    2. として、" マスクすべて ' ボタンを開き、" マスク チャンネル " ウィンドウ、プルダウン メニューの下から逆算の赤蛍光シグナルを選択 " チャネルの選択 " ミトコンドリア信号の
    3. にチェック マークを配置するボックスをクリックして、" マスクを適用する前に重複するチャネル " オプション
    4. 。 前のラジオで
    5. をクリックしてボタン、" 定数内/外 " マスク設定のボックス内をクリックしますチェックを入れて、" 外表面ボクセルを設定 " のオプションと値を 0.00 にタイプ。神経領域内でミトコンドリアの信号を表す新しいチャネルを作成する [ok] ボタン
  5. ミトコンドリア固有サーフェスを作成:
    1. 使用、" サーフェスを作成 " から神経固有のミトコンドリア信号の新しく作成された蛍光チャネルからミトコンドリアの固体表面を作るためのツール3.4 の手順を実行します
    2. のチェックを外す、" 滑らかな " 機能し、選択、" バック グラウンド減算 " のしきい値を設定する機能。この機能は、背景からミトコンドリアを識別するためにミトコンドリアの信号周辺ローカル コントラストを使用します
    3. セットのしきい値がミトコンドリアを正確に識別するために十分に低い。この例では下限のしきい値は、16 ビット (65,536) スケールの 2,000 に設定されました
    4. は、サイズに基づくミトコンドリアの曲面をフィルター処理します。この例では 1.0 ボクセルにボクセル制限が設定されて、最低であります。可能性を制限します。必要に応じて、手動で非ミトコンドリア内のサーフェスを編集、" 編集 " により、複数のオブジェクトを選択するコントロール キーを押しながら、Del キーで削除するタブ
      。 注: 場合によっては、ソフトウェアがサーフェスを作成区別蛍光ミトコンドリア信号に関連付けられていません。これらのケースでは、それとそれらを削除することが可能、" 編集 "] タブ
  6. 輸出分析の計測値を計算する:
    1. 神経とからミトコンドリア表面の値をエクスポート、" 統計 " 電子スプレッドシート ソフトウェアをさらに分析のタブ
    2. 神経とミトコンドリアのサーフェスの両方のボリューム値をエクスポートします
    3. 各イメージ内に存在する個々 の神経線維の数をカウントして、アクティブセルの値を記録します
    4. 各イメージの電子スプレッドシートで分析の次の潜在的な値を計算:
      1. すべての神経表面のボリュームの合計します
      2. 。 未満 0.02 μ m 3 と箱のボリューム下神経固有ミトコンドリア表面を
      3. フィルターによる表面のサイズします。たとえば、0.02 - などのビンを使用して 0.04 0.04 - 0.08 0.08 - 0.16、0.16 - 0.32、0.32 - 0.64, 0.64 - 1.28 1.28, 2.56 μ m 3 を超える 2.56
        。 注: ミトコンドリア量の下限値は 0.02 μ m 3 mitonchodria 36 , 37 , 38 の以前に発行されたボリュームに基づいて設定された
      4. 箱 (0.02 - 2.56 μ m 3 を超える) を各箱内神経固有ミトコンドリア面数と総面数をカウントします
      5. は、各箱に神経固有ミトコンドリア表面の割合を計算します。ミトコンドリア表面の合計数で割ったビンごとカウントを使用します
      6. すべての神経固有ミトコンドリア表面ボリュームの合計します
      7. 合計神経表面ボリュームすべてのミトコンドリア表面ボリュームの合計で割ることによってミトコンドリアの信号を神経の割合を計算します
      8. 合計神経表面ボリューム ミトコンドリアのすべてのサーフェスの数で割ることによってミトコンドリア神経体積当たりの数を計算します

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

可視化と人間 IENFs 内ミトコンドリアの定量化

蛍光免疫染色により, 神経, ミトコンドリアと核を視覚化する人間の皮膚生検内複数信号の同時表示が可能です。96 ウェル プレートは、免疫組織染色の手順を整理するための便利な方法です。図 1は、ソリューションの 12 段階を通じて処理する 8 つのセクションまでこの構成アカウントを示しています。フラット ロッカーで穏やかな攪拌と組み合わせてフローティング メソッドは、抗体に両側からセクションを貫通する十分なアクセス権があることを確認します。プロトコルの完了するために 3 日間は主に神経とミトコンドリアに一貫したラベル 4 ° c、第一次および二次抗体の孵化を一晩のため。

プロシージャの残りの部分では、画像処理、蛍光信号の解析を組み込まれています。共焦点顕微鏡活用蛍光信号の光学的セクションに離散信号焦点面から焦点のずれた信号を排除することによって。ティッシュ セクションを通じて z シリーズの買収は、神経、ミトコンドリア、核の蛍光信号の 3 D 表現を提供します。パラメーターは、5 神経の平均を含む表皮の長さに沿って画像 172 μ m に最適化されています。図 2は、表皮から収集される 3 つの蛍光信号の典型的な 3 D イメージを示しています。PGP9.5 染色 (図 2 b) は、組織のバック グラウンド自動蛍光よりも高い強度のある表皮と皮膚の神経の豊富な信号を提供します。核染色 (図 2) は、表皮内神経線維が支配する表皮の境界を識別するのに役立ちます。角質層を構成する角質細胞の残りの DNA が原因かもしれない拡散信号に表皮の外側の層が一般的です。ミトコンドリア染色 (図 2 D) 信号の大部分はケラチノ サイト主には、表皮の細胞に関連付けられて PDH 明確に分類されます。

アクイジション ・ パラメーターはこのプロトコルで記述されているは、1.25 の開口と倍率 2.2 倍油浸対物レンズ 40 を使用します。30-50 μ m × 176.1 μ m × 176.1 μ m の XYZ のイメージ サイズでこの結果します。これらの設定は、画像 (図 3 a) あたり 4-6 神経線維の平均値を含むに表皮の十分をキャプチャします。高い解像度でサンプリングは、各イメージの神経の数を減らすでしょう。図 3 bは、画像ごとの少ない神経の結果 114.8 μ m × 114.8 μ m、XY 領域を縮小、3.3、ズームの倍率を示しています。理想的なサンプリング密度 1.25 数値の絞りに油浸対物レンズ x 40 のナイキスト (http://www.svi.nl/NyquistCalculator) によって定義されているは、54 nm x 54 nm x 205 nm の XYZ のスキャン解像度を示しています。これは解像度 1,024 × 1,024 で 6.6 倍の倍率が必要し XY 57.4 μ m x 57.4 μ m まで縮小し、キャプチャ画像 (図 3) ごとの 1-2 神経の平均。

次の段階は、画像の不要な領域を削除し、信号を向上させるイメージ処理を実行することです。このプロトコルでは、真皮や角質層は表皮の IENFs が支配する領域に分析を集中するために削除されます。三次元ソフトウェアを分離、強化および蛍光信号を分析することが可能になります。地域 (図 4 aC) 表皮の上下をトリミングして表皮の神経とミトコンドリアを分離するソフトウェア ツールが必要です。このプロセスは信号の拡張表示をまとめると、表皮一帯がフリーハンドをトレースして簡素化します。トリミングされた画像は、画像修復アルゴリズムによってさらに処理されます。デコンボリューションは、神経やミトコンドリア信号 (図 4) の解像度を最適化するために使用されます。

最終段階は、検出し、信号形態特徴を抽出します。このプロトコルの重要な側面は、神経固有のミトコンドリアの機能を測定することです。画像解析ソフトでは、その表面の内で (この場合ミトコンドリア) で別の蛍光信号を分離するマスキング ツールとして作成されたサーフェスを使用して、(この場合は神経の表面) で 1 つの信号の機能があります。ミトコンドリア神経固有の分析の最初の手順、神経 (図 5 aB) 周りの 3D サーフェスを作成します。神経表面神経固有蛍光ミトコンドリア信号 (図 55D 5 e5 G) をトリミングに使用されます。最後に、体積を測定 (図 5 階5H) ミトコンドリア神経固有信号のまわり 3 D サーフェスが作成されます。画像解析ソフトと集計データからエクスポートされる地形計測を表 3に示します。エクスポートする主な値は、神経と神経固有ミトコンドリア信号のボリューム値です。ミトコンドリアからボリューム データのサイズ頻度分布 (図 6) を作成するために使用し、ミトコンドリアのサイズ周波数データを生成するビニングです。ボリュームのデータは、IENF ボリューム内のミトコンドリアのボリュームの IENF ボリュームあたりミトコンドリアの数と割合の要約指標を作るにも使用されます。

表 3 および図 6に表示されるデータは、この手法が皮膚生検から人間 IENFs 内ミトコンドリアを定量化するための手段を提供することを示しています。このサンプルから神経ミトコンドリア全体に分散してミトコンドリアの大半は 0.02 - 間、0.32 μ m3。これらのサイズは通常ミトコンドリア36,37,38,39に関連付けられている範囲内にあります。小さなミトコンドリアより大きなミトコンドリア39これらの神経内のミトコンドリアがより運動性かもしれないと示唆しているよりも運動性が示されています。確かに、研究は大きく、腫れのミトコンドリアがない小さなミトコンドリアだけでなく、輸送を行うし、軸索変性39,40,41につながる可能性があります関与しています。したがって、ミトコンドリア神経固有の特性は、ミトコンドリア形態と輸送の変化が軸索変性に関連付けられている神経変性疾患の研究に適用される貴重な技術15,25,26,27,42,43

5 %bsa 遮断ソリューション
解決を妨げる 5 %bsa のコンポーネント 必要な量
ウシ血清アルブミン (BSA) [最終濃度: 5%] 0.625 g
1.0% トリトン X-100 (テキサス州-100) [最終濃度: 0.3%]
3.75 mL 1x PBS ~8.125 mL 合計(12.5 mL に容量をもたらす 1x PBS を使用して) 12.5 mL

表 1:ソリューションをブロック 5 %bsa 。免疫のプロトコルの初期のステップで 5 %bsa ブロック ソリューションを使用することで、抗体の非特異的結合をブロックします。

1 %bsa 洗浄ソリューション
リンス液 1 %bsa のコンポーネント 必要な量
ウシ血清アルブミン (BSA) [最終濃度: 1%] 0.125 g
1.0% テキサス州-100 [最終濃度: 0.3%] 3.75 mL
1x PBS ~8.125 mL
合計(12.5 mL に容量をもたらす 1x PBS を使用して) 12.5 mL

表 2:リンス液 1 %bsa 。リンス液 1 %bsa は抗体の非特異的結合をブロックする免疫プロトコルで使用され、第一次および二次抗体を希釈して使用します。

IENFs と神経固有ミトコンドリアの形態計測
画像解析ソフトウェアからエクスポートおよび概要データ
Mt のサイズ周波数ビン Mt サイズ周波数ビンでの数 箱に Mt の割合 Mt の合計数 Mt ボリューム (μ m3) IENF ボリューム (μ m3) IENF ボリューム (数/100 μ m3) あたりの山数 IENF ボリュームで Mt ボリュームの割合 IENFs の数

.02.04 μ m3
20 24.4% 82 13.41 518.88 15.8 2.58% 4

.04.08 μ m3
28 34.1%

.08.16 μ m3
14 17.1%

.16.32 μ m3
12 14.6%

.32.64 μ m3
4 4.9%

.64 1.28 μ m3
3 3.7%

1.28 2.56 μ m3
1 1.2%

2.56 + μ m3
0 0.0%

テーブル 3:IENFs と神経固有ミトコンドリアの形態計測します。テーブルは、測定、画像解析ソフトと集計データからエクスポートされた計測値を表します。省略形: IENF、表皮内神経線維;Mt、ミトコンドリア。

Figure 1
図 1: 皮膚生検の免疫組織化学の 96 ウェル プレートの設定を表す模式図。プレート内の行を表すブロック、洗浄、インキュベーションのソリューションのためのプロトコルの手順、列が (1 プレートあたり 8 つのセクション) から個々 の組織のセクションを表します。この図の拡大版を表示するのにはここをクリックしてください

Figure 2
図 2:蛍光免疫組織化学の代表的な 3 D 共焦点顕微鏡画像人間の表皮生検から組織切片の処理します。未処理の 3 D 投影画像(A)合併の蛍光シグナルと(B)神経 (神経、緑)、 (C)核 (原子、青) と(D)ミトコンドリア (Mt、赤) 表皮の個々 の信号を示していて、真皮。表皮の角質層の信号の欠如を注意してください。スケール バー = 20 μ m.この図の拡大版を表示するのにはここをクリックしてください

Figure 3
図 3: その後の分析の少ない神経画像解像度結果が向上します。すべての画像は 1.25 開口 40 X 石油目的で捕獲され、3 D 投射を示す神経 (緑)、(Mt、赤) のミトコンドリアと核 (原子、青) の蛍光信号。2.2 (A)の倍率で撮影した画像には、ビュー内でいくつかの神経が含まれています。3.3 (B)または(C)6.6 にズーム倍率を増やす、理想的なナイキスト ・ サンプリングは大幅各画像内の神経の数を減らします。スケール バー = 20 μ m.この図の拡大版を表示するのにはここをクリックしてください

Figure 4
図 4: 画像処理します。代表は、人間の表皮生検組織切片の共焦点顕微鏡から画像のフォーカス (最大強度投影) ビューを拡張しました。未処理の投影画像は、 (A)神経 (緑)、核 (原子、青) とミトコンドリア (Mt、赤) の結合された蛍光信号を示しています。真皮や角質層、inte の領域のトリミング(B)残りの部分 (ROI) フリーハンド選択ツール (強調表示された領域を青、ROI をトリミング) 表皮の信号のみを分離します。(C)トリミング表皮は計算された点に(D)デコンボリューション広がって神経 (緑) の分解能を向上するための関数処理、およびミトコンドリア (Mt、赤) 信号。スケール バー = 20 μ m.この図の拡大版を表示するのにはここをクリックしてください

Figure 5
図 5: 画像解析します。代表的な 3 D 共焦点顕微鏡画像を示しています (A) 神経固有の緑色蛍光の信号。(B) 3 D 面 (水色) の神経信号が作成されます。神経固有のミトコンドリア信号は(D)神経表面のマスキング ツールとして使用(C)表皮ミトコンドリア信号 (Mt、赤) の残りの部分から分離されます。神経固有ミトコンドリア赤蛍光信号を使用し、結果として得られる(E, G) (F, H)神経表面 (シアン) 内ミトコンドリアのまわりの表面 (Mt 表面、マゼンタ)。G および H は、E の白いボックスの拡大ビューと f. スケール バー = 20 μ m (A ~ F), 5 μ m (G H)。この図の拡大版を表示するのにはここをクリックしてください

Figure 6
図 6: ミトコンドリアのサイズ周波数ヒストグラム。Mitochondrialsurface データは、彼らの量 (μ3) に応じて様々 な箱のそれぞれに存在するミトコンドリアの割合を視覚化するためのサイズ周波数ヒストグラムとして表示されます。この図の拡大版を表示するのにはここをクリックしてください

Subscription Required. Please recommend JoVE to your librarian.

Discussion

このプロトコルを特定、定量化、サイズと人間の皮膚生検から 3 D で IENFs 内神経固有ミトコンドリアの分布を分析し設計されています。プロトコルのいくつかの重要な手順があります。浮遊蛍光免疫組織化学染色、各サンプルでは、探索的研究44,45より汎用性の高い方法論を提供することで複数の信号を分析して設計されています。この手順は、共焦点顕微鏡画像と 3 D 解析を取得するために必要な 50 μ m セクション全体イメージの獲得を最大化するために、抗体の組織への浸透のためできます。もう一つの重要なステップは、ミトコンドリアを測定するための解像度を維持しながら画像あたり十分な神経をキャプチャ間のバランス イメージ集録パラメーターです。ティッシュ セクションはこれで使用され、標準的な皮膚生検プロトコルが約 3 ミリメートル長い45,46,47,48。アクイジション ・ パラメーターは、画像 1 枚あたり 4-6 神経線維の平均値を含むに表皮の十分なこのプロトコルのキャプチャで説明します。高い解像度でサンプリングは大幅に各画像に、ナイキスト ・ サンプリングで、特に神経の数を減らします。3 番目の重要なステップは、デコンボリューション アルゴリズムを使用して、解像度と信号、特にミトコンドリアのコントラストを向上させることです。画像のデコンボリューションは、ないより高い解像度でサンプリングを補うために助けた。最後の重要なステップは、画像解析ソフトを使用して、表皮の細胞に関連するミトコンドリアから神経固有ミトコンドリアを特定することです。これは、神経内でローカライズするミトコンドリアの信号をトリミングするマスキング ツールとして神経表面の使用で。

この手法を検討するいくつかの潜在的な変更があります。可能な変更の 1 つは、蛍光免疫組織化学の期間を短縮できることでしょう。4 ° C で一次および二次抗体溶液に一晩の孵化は、室温で 3-4 時間に短縮できるかもしれない。ただし、室温で短い孵化はしばしばバック グラウンド蛍光を増加する貧しい信号対雑音を避けるために注意する必要がありますので。もう一つの可能な変更は、画像集録パラメーターを調整することでしょう。前述のように、ここで説明した画像の取得は高画像解像度で画像ごと神経の合理的な数をキャプチャに偏っていた。1.3 開口 63 倍油浸対物レンズなど、高い倍率の目的を使用することが可能です。すべてのパラメーターは同じまま、63 X 目的が使用された場合、XY イメージ フィールドは 112 μ x 112 μ m になるし、したがって神経画像ごとの平均数を減らします。主なポイントは、獲得とその後の分析を通して一貫性のあるパラメーターを使用することです。

この手法の主な制限は、時間がかかることです。免疫組織を処理する 3 日間がかかる、画像集録は、画像によっては方法多くの光 z 手順が取られるあたり約 30-50 分、画像処理/解析まで約 20 分。これは重要な時間のコミットメントが、最後に重要な地形計測が得られます。この手法のもう一つの制限は、画像ごとにサンプリングされ表皮の限られた地域です。ただしより高速なコンピューターのプロセッサおよび解析ソフトウェアと組み合わせる改良された解像度で画像取り込み速度の進歩は、間違いなく向上します。

他の方法でこの議定書の意義は、共焦点顕微鏡と 3 D 画像解析を蛍光免疫組織化学を組み合わせることの力にあります。伝統的に、表皮内神経線維解析、免疫組織化学による発色と明視野顕微鏡、特に神経障害45,47,49の臨床診断のため行われます。蛍光免疫組織化学の使用を汚し、各サンプルでは、探索的研究44,45より汎用性の高い方法論を提供することで複数の信号を分析することが可能になります。この手法は、この場合神経固有ミトコンドリア、複雑な信号からミトコンドリアの表皮細胞に関連付けられている、興味の特定の信号を分離するための戦略を提供します。

この技術の力は、将来のアプリケーションには有用です。特定し神経固有のミトコンドリアを測定できるサイズとミトコンドリアの分布の疾患に伴う変化を評価することが可能になります。複数の神経学的な合併症には、病気の潜在的なメカニズムとしてミトコンドリアの機能低下が関与してください。特に、この方法の修正版は、糖尿病と糖尿病性末梢神経障害患者のサイズおよび年齢をマッチさせたに比べて神経固有ミトコンドリア分布の測定可能な変化を示すに使用されています50を制御します。この手法は改善したり、感覚神経症を治すための治療法の有効性を評価するために有用であります。最後に、技法の多様性は、他の蛍光信号からデータのサブセットを分離する 1 つの蛍光信号を使用する解析の広い範囲に適用されます。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

ないの利害衝突を宣言します。

Acknowledgments

この作品は、国立機関の健康補助金 K08 NS061039-01A2、神経研究のためのプログラムによって支えられた & 探索、および、A. アルフレッド Taubman 医療研究所、ミシガン大学の。この作業には、形態と国内機関の健康の付与 5 P 90 DK-20572 国立糖尿病・消化器・腎臓病からによって資金を供給、ミシガン州糖尿病研究センターの画像解析コアが使用されます。著者感謝したい j. ロビンソン シングルトンとゴードン ・ スミス (ユタ大学) ヒトの皮膚のサンプルの寛大な寄付のため。

Materials

Name Company Catalog Number Comments
2% Zamboni's Fixative Newcomer Supply, Middleton, WI  1459A 2% paraformaldehyde, 0.2% saturated picric acid in phosphate buffered saline (PBS), pH 7.4
10x Phosphate Buffered Saline (PBS)  Fisher Scientific, Pittsburgh, PA BP399-4 To make up 1x PBS
Image-iT FX Signal Enhancer ThermoFisher Scientific, Waltham, Massachusetts I36933 enhances Alexa Fluor dye signals by reducing nonspecific binding
Anti-Protein Gene Product 9.5 Antibody (Rabbit Polyclonal) Proteintech Group Inc. Rosemont, IL 14730-1-AP abbreviated as PGP9.5, replaces discontinued AbD Serotec (Cat. No. 7863-0504) antibody
Anti-Pyruvate Dehydrogenase E2/E3bp Antibody (Mouse Monoclonal) abcam, Cambridge, MA ab110333 abbreviated as PDH
Goat anti-mouse Secondary antibody Alexa Fluor 594 conjugate ThermoFisher Scientific, Waltham, Massachusetts A-11034 red-fluorescent conjugated secondaryantibody
Goat anti-rabbit Secondary antibody Alexa Fluor 488 conjugate ThermoFisher Scientific, Waltham, Massachusetts A-11032 green-fluorescent conjugated secondaryantibody
Albumin, from Bovine Serum Sigma-Aldrich, St. Louis, MO A7906-100 abbreviated as BSA
Triton X- 100 Sigma-Aldrich, St. Louis, MO T9284 abbreviated as TX-100
0.22 µm Filter EMD Millipore, Billerica
MA
MILLEX GP SLGP 033NS 0.22 µm Millipore filter
Parafilm M Fisher Scientific, Pittsburgh, PA 13-374-10 Curwood Wisconsin LLC Parafilm M (PM-996)
Non-calibrated Loop Fisher Scientific, Pittsburgh, PA 22-032092 inoculating Loop by Decon LeLoop (MP 199-25)
96-well Assay Plate Corning Incorporated, Corning, NY 3603 96-well flat bottom plate
Prolong Gold antifade reagent with DAPI ThermoFisher Scientific, Waltham, Massachusetts P-36931 DAPI staining of nuclei
Microscope Cover Glass 50 x 24 mm Fisher Scientific, Pittsburgh, PA 12-544E Coverslips
Superfrost Plus Microscope Slides Fisher Scientific, Pittsburgh, PA 12-550-15 Microscope Slides
Leica SP5 Laser Scanning Confocal Microscope Leica Microsystems, Buffalo Grove, IL SP5 Confocal Microscope
Volocity x64 Software  Perkin Elmer, Waltham , MA version 4.4.0 Volocity software is used for Steps 3.1 and 3.2 in the protocol for image processing
Imaris x64 3 Dimensional Analysis Software Bitplane, Concord, MA version 7.7.1 Imaris software is used for Steps 3.3 through 3.5 in the protocol for image analysis
Excel Microsoft, Redmond, WA version Office 2013 Excel spreadsheet software is used for Step 3.6 in the protocol to summarize morphometric features
Optimum Cutting Temperature Compound Sakura Finetek USA, Inc., Torrance, CA 4583 abbreviated as OCT
Leica Cryostat Leica Biosystems, Buffalo Grove, IL CM1850 Cryostat for cutting 50 µm sections
CellLight Mitochondria-GFP, BacMam 2.0 ThermoFisher Scientific, Waltham, Massachusetts C10600 Used as a postive control to label mitochondria with a green fluorescent signal

DOWNLOAD MATERIALS LIST

References

  1. Nicholls, D. G., Budd, S. L. Mitochondria and neuronal survival. Physiol Rev. 80 (1), 315-360 (2000).
  2. Chan, D. C. Mitochondrial fusion and fission in mammals. Ann Rev Cell Dev Biol. 22, 79-99 (2006).
  3. Ni, H. M., Williams, J. A., Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4 (C), 6-13 (2015).
  4. Mink, J. W., Blumenschine, R. J., Adams, D. B. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol. 241 (3), R203-R212 (1981).
  5. Ames, A. 3rd CNS energy metabolism as related to function. Brain Res Brain Res Rev. 34 (1-2), 42-68 (2000).
  6. Harris, J. J., Jolivet, R., Attwell, D. Synaptic energy use and supply. Neuron. 75 (5), 762-777 (2012).
  7. Hollenbeck, P. J. The pattern and mechanism of mitochondrial transport in axons. Front Biosci. 1, d91-d102 (1996).
  8. Cai, Q., Sheng, Z. H. Mitochondrial transport and docking in axons. Exp Neurol. 218 (2), 257-267 (2009).
  9. Schwarz, T. L. Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol. 5 (6), (2013).
  10. Saxton, W. M., Hollenbeck, P. J. The axonal transport of mitochondria. J Cell Sci. 125 (Pt 9), 2095-2104 (2012).
  11. Sajic, M., et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 11 (12), e1001754 (2013).
  12. Ohno, N., et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of ranvier. J Neurosci. 31 (20), 7249-7258 (2011).
  13. Miller, K. E., Sheetz, M. P. Axonal mitochondrial transport and potential are correlated. J Cell Sci. 117, 2791-2804 (2004).
  14. Macaskill, A. F., et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 61 (4), 541-555 (2009).
  15. Sheng, Z. H., Cai, Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 13 (2), 77-93 (2012).
  16. Berthold, C. H., Fabricius, C., Rydmark, M., Andersen, B. Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J Neurocytol. 22 (11), 925-940 (1993).
  17. Fabricius, C., Berthold, C. H., Rydmark, M. Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. J Neurocytol. 22 (11), 941-954 (1993).
  18. Hollenbeck, P. J., Saxton, W. M. The axonal transport of mitochondria. J Cell Sci. 118 (Pt 23), 5411-5419 (2005).
  19. Ohno, N., et al. Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci U S A. 111 (27), 9953-9958 (2014).
  20. Kang, J. S., et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 132 (1), 137-148 (2008).
  21. Chada, S. R., Hollenbeck, P. J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol. 14, 1272-1276 (2004).
  22. Yi, M., Weaver, D., Hajnoczky, G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol. 167 (4), 661-672 (2004).
  23. Saotome, M., et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A. 105 (52), 20728-20733 (2008).
  24. Schon, E. A., Przedborski, S. Mitochondria: the next (neurode)generation. Neuron. 70 (6), 1033-1053 (2011).
  25. Petrozzi, L., Ricci, G., Giglioli, N. J., Siciliano, G., Mancuso, M. Mitochondria and neurodegeneration. Biosci Rep. 27 (1-3), 87-104 (2007).
  26. Maresca, A., la Morgia, C., Caporali, L., Valentino, M. L., Carelli, V. The optic nerve: a "mito-window" on mitochondrial neurodegeneration. Mol Cell Neurosci. 55, 62-76 (2013).
  27. Su, B., et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta. 1802 (1), 135-142 (2010).
  28. Vincent, A. M., et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 120 (4), 477-489 (2010).
  29. Leinninger, G. M., et al. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis. 23, 11-22 (2006).
  30. Leinninger, G. M., Edwards, J. L., Lipshaw, M. J., Feldman, E. L. Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nat Clin Pract Neurol. 2, 620-628 (2006).
  31. Edwards, J. L., et al. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 53 (1), 160-169 (2010).
  32. Fernyhough, P., Roy Chowdhury, S. K., Schmidt, R. E. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab. 5 (1), 39-49 (2010).
  33. Schmidt, R. E., Green, K. G., Snipes, L. L., Feng, D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol. 216 (1), 207-218 (2009).
  34. Penna, G., et al. Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. J Immunol. 182 (7), 4056-4064 (2009).
  35. Lentz, S. I., et al. Mitochondrial DNA (mtDNA) Biogenesis: Visualization and Duel Incorporation of BrdU and EdU Into Newly Synthesized mtDNA In Vitro. J Histochem Cytochem. 58 (2), 207-218 (2010).
  36. Glas, U., Bahr, G. F. Quantitative study of mitochondria in rat liver. Dry mass, wet mass, volume, and concentration of solids. J Cell Biol. 29 (3), 507-523 (1966).
  37. Bertoni-Freddari, C., et al. Morphological plasticity of synaptic mitochondria during aging. Brain Research. 628 (1-2), 193-200 (1993).
  38. Kaasik, A., Safiulina, D., Zharkovsky, A., Veksler, V. Regulation of mitochondrial matrix volume. Am J Physiol. 292 (1), C157-C163 (2007).
  39. Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W., Lichtman, J. W. Imaging axonal transport of mitochondria in vivo. Nat Meth. 4 (7), 559-561 (2007).
  40. Park, J. Y., et al. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience. 238, 258-269 (2013).
  41. Court, F. A., Coleman, M. P. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 35 (6), 364-372 (2012).
  42. Baloh, R. H. Mitochondrial dynamics and peripheral neuropathy. Neuroscientist. 14 (1), 12-18 (2008).
  43. Chowdhury, S. K., Smith, D. R., Fernyhough, P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 51, 56-65 (2013).
  44. Kennedy, W. R., Wendelschafer-Crabb, G., Johnson, T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology. 47, 1042-1048 (1996).
  45. Lauria, G., et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 12 (10), 747-758 (2005).
  46. Lauria, G., et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 17 (7), e944-e909 (2010).
  47. Umapathi, T., Tan, W. L., Tan, N. C. K., Chan, Y. H. Determinants of epidermal nerve fiber density in normal individuals. Muscle Nerve. 33 (6), 742-746 (2006).
  48. Lauria, G., et al. Epidermal innervation: changes with aging, topographic location, and in sensory neuropathy. J Neurol Sci. 164 (2), 172-178 (1999).
  49. Lauria, G., et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 15 (3), 202-207 (2010).
  50. Hamid, H. S., et al. Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol. 1 (10), 799-812 (2014).

Tags

神経生物学、問題 127、ミトコンドリア、表皮内神経線維、皮膚生検、三次元画像解析、小さな繊維の神経障害
三次元画像と人間の表皮内神経線維内のミトコンドリアの解析
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hamid, H. S., Hayes, J. M., Feldman, More

Hamid, H. S., Hayes, J. M., Feldman, E. L., Lentz, S. I. Three-dimensional Imaging and Analysis of Mitochondria within Human Intraepidermal Nerve Fibers. J. Vis. Exp. (127), e53369, doi:10.3791/53369 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter