Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

对肌红蛋白鲸类检测基于金免疫层析胶体试纸条的研制

Published: July 13, 2016 doi: 10.3791/53433

Protocol

道德守则:由嘉义大学,批准编号的机构动物护理和使用委员会(IACUC)按照国际准则进行研究并批准:99022.鲸类动物样品的使用是由台湾农业委员会(研究许可证许可100M-02.1-C-99)。

1.肌肉样品制备和SDS-PAGE

注:从23种肌肉样本,包括16种海洋哺乳动物,5种陆栖哺乳类动物,金枪鱼和鸡肉在这项研究中( 表1)使用。鲸类动物的肌肉样本来自个人搁浅,误捕渔业,和没收所得。兔,鼠,狗和鸡肌肉组织从嘉义大学的动物疫病诊断中心获得。牛肉,猪肉,羊肉,鱼和金枪鱼的样品从当地超市购买。斑海豹( 斑海豹的肌肉样本

  1. 在-20°C,直到使用存储所有样本。
  2. 在-20℃的预冷砂浆。然后把3克冰冻肌肉样品进去。
  3. 均质使用组织匀浆10毫升凉爽磷酸盐缓冲盐水(PBS)中的样本。
  4. 离心匀浆样品以10,000 xg离心在4℃下10分钟。收集上清液并储存于-20℃直到使用。
  5. 制备5毫升5%浓缩胶(3.07毫升蒸馏水,1.25毫升液pH 6.8,625微升40%的丙烯酰胺,50微升10%过硫酸铵(APS)的,和5μl四甲基乙二胺的4倍上凝胶缓冲液( TEMED))和10毫升15%分离胶(3.65毫升蒸馏水,2.5毫升4倍的pH值8.8下的凝胶缓冲液,3.75毫升40%的丙烯酰胺,加入100μl的10%APS,和4微升TEMED的)。
    1. 在电泳单元,倒入堆叠上分离凝胶(15%丙烯酰胺),后者已凝固后的顶部凝胶(5%丙烯酰胺)。插入在层叠凝胶的凝胶梳子。
  6. 按照下列条件进行PAGE:初始运行条件:100伏,20分钟,并最终条件:120伏,40分钟。
  7. 染色在室温下用考马斯亮蓝将凝胶进行30分钟,直到凝胶的颜色均匀的蓝色。
    注:染色完成后的凝胶不再是在染料溶液中可见。
  8. 在室温下用乙酸溶液(10%)1小时脱色它。乐队将开始出现。继续在4℃过夜,脱色直到背景是清楚的。

2.多肽合成和单克隆抗体生产

  1. 从GenBank中检索兆的氨基酸序列包括金枪鱼,鸡,鸵鸟,家养哺乳动物,密封和18种鲸类( 表2)。
  2. 使用对齐适当的软件16的序列:
    1. 通过选择对齐启动对齐浏览器:编辑/编译启动栏上的对齐 ;选择创建新对齐 ,然后单击确定 。将出现一个对话框,询问“你建立一个DNA或蛋白质序列比对?”
    2. 点击标有“ 蛋白质 ”按钮;选择数据:打开:检索文件 ,并选择序列文件序列 ;选择编辑:全选菜单命令,选择所有网站在数据创建多序列比对每一个设置序列。
    3. 选择路线:由ClustalW比从主菜单中对齐使用的ClustalW算法选择的序列数据对齐 ;选择“BLOSUM”作为蛋白质权重矩阵,然后点击确定按钮。
  3. 分析序列比对:
    1. 专注于5抗原反应SITES 17:站点1(AKVEADVA,15-22),现场2(KASEDLK,56-62),现场3(ATKHKI,94-99),现场4(HVLHSRH,113-119),与本站5(KYKELGY,145- 151),并发现鲸类动物中是保守的片段。 *(星号;在对齐共识符号(协议2.2.3))表明其中有一个单一的,完全保守残基的位置。在鲸类下面的保守片段发现:序列KASEDLKKHG(包括​​站2)和序列HVLHSRHP(包括站4)。
  4. 根据序列分析,并用卵清蛋白蛋白(OVA)作为使用商业服务载体蛋白质缀合物合成候选序列片段。
    1. 添加疏水性氨基酸( 例如 ,甲硫氨酸),以抗原反应部位的N-末端,用于防止所述肽从分解( 例如 ,M-KASEDLKKHG)。
    2. 延长的抗原反应部位的C末端的核心抗原性位点暴露于免疫细胞。此外,conju栅极通过加入半胱氨酸(Cys,C)与C末端以OVA肽( 例如 ,M-KASEDLKKHG-NTVL-C)。
  5. 乳化完全弗氏佐剂免疫原1或弗氏不完全佐剂对免疫原2在PBS等体积各合成肽(3毫升,最终浓度30-50微克/ 100微升)。
  6. 接种免疫原1(0.1毫克)皮下注射到各5只雌性BALB / c小鼠。
  7. 在两周的时间间隔执行皮下加强注射用免疫原2五次,每次增压之前收集来自小鼠尾部剪裁取样测试血清。
  8. 确定用于第一次筛选的血清滴度。
    1. 溶解100微克游离肽在25毫升反应缓冲液和试样50微升溶液中加入96孔板的每个孔中。加10微升偶联试剂溶液导入各孔中,并混合板。将培养板在室温下2小时。
    2. 除去孔中的内容,用蒸馏水洗各孔3次,并通过加入200微升的封闭溶液的遮挡板。孵育在室温下1小时。移除的内容,并用蒸馏水洗涤各孔3次。
    3. 用于确定第一轮筛选血清效价进行间接ELISA(协议5.1-5.7)。选择与脾集最高价(最高光密度)鼠标。
  9. 脾收集前三天,接种0.1毫克免疫原1的皮下到小鼠呈现最高滴度。
  10. 收集来自所选择的免疫的小鼠和保险丝与鼠骨髓瘤细胞F0(SP2 / 0-AG14)的脾细胞,以获得杂交瘤细胞单抗生成18。
  11. 融合后14天内,通过筛选倾向于使用间接ELISA免费合成肽的杂交瘤上清液(协议5.1-5.7)的反应选择阳性克隆。
  12. 稀释细胞以适当数量,每孔为maximizING仅包含一个单一的克隆(稀释克隆)的孔的比例。
    1. 添加100μl的细胞培养基中,除了该空孔A1中的96孔板的所有孔中。
    2. 加入200微升细胞悬浮液至A1孔。然后迅速从A1到B1转移100微升,并轻轻吹打混合。重复这些1:2稀释了整个列,然后丢弃从H1 100微升,使其具有相同的体积,它上面的孔中结束。
    3. 额外的100微升培养基中加入1列有一个8通道微量。然后快速地从每个孔中在第1列使用相同的移液管转移100μl到那些在第2栏,并轻轻吹打混匀。
    4. 使用同样的技巧,重复这些1:2稀释整个板块。丢弃从每个孔中加入100μl在最后一列。
    5. 通过加入到每个100微升培养基以及将所有孔中以200微升的最终体积。解放军孵育德在加湿 CO 2培养箱中不受干扰在37℃。
    6. 检查每口井,并标记包含只是一个单一的殖民地所有的井。开展两个或两个以上clonings直到包含单克隆井> 90%是阳性抗体产生。
  13. 屏幕Western blot和斑点杂交(协议3.1-4.6)的克隆。然后,从水井到大型船舶的亚文化群体扩大获得单克隆抗体的细胞。一般每个克隆被转移到一个单一的井在12或24孔板中。
  14. 测量单克隆抗体和牛,羊,猪,狗,兔,金枪鱼,鸡肉,密封肌肉提取物,并通过免疫印迹和斑点杂交(协议3.1-4.6)四个具有代表性的鲸类之间的亲和力。
  15. 接种选定杂交瘤细胞(最多至3×10 6)腹膜内入小鼠以诱导腹水。腹部肿胀通常是明显在7-10天后注射杂交瘤细胞。收集流体使用皮下注射针(小于20号)。
  16. 离心机腹水液(10,000×g离心10分钟)以去除细胞和碎片。通过0.45微米的过滤器过滤。添加1〜20毫升样品,15毫升结合缓冲液和3至5ml洗脱缓冲液进G蛋白Sepharose柱。收集含有从小鼠腹水纯化抗体的洗脱级分。
  17. 确定由抗体分型试剂盒使用制造商的说明将抗体同种型。

3.免疫印迹

  1. 制备2×上样缓冲液通过混合950微升2×Laemmli样品缓冲液中以50μl的BME的含有β巯基乙醇(BME)。使用多克隆兔抗人兆抗体时5(家畜和金枪鱼),以及:淡化肌肉上清液(协议1.1-1.4)的加样缓冲液以合适的比例以获得良好的信号:1:50(鲸类和密封)和1- 1:1(猪,兔,鸡和金枪鱼),1:5(牛,羊和狗)和1:25(鲸类和盖章)时,ntibody是从杂交瘤上清液。
  2. 在95℃下5分钟热样品。负载样品到SDS-PAGE凝胶(4%丙烯酰胺堆叠和12%丙烯酰胺分离)与分子量标记物沿着所述孔中。在50运行5分钟的凝胶V,那么增加的电压为150V以完成运行在约1小时。
  3. 放置在1×转移缓冲液的凝胶15分钟。分离的蛋白转移到硝酸纤维素(NC)膜后,他们用PAGE分离。传输可以在100V进行60-90分钟。
  4. 制备阻断溶液:含有1×PBS中的0.1%吐温20,用5%的脱脂奶粉。在25毫升阻断在室温下溶液1小时的阻断NC膜。洗涤三次,每次5分钟,用吐温20(PBST)15毫升磷酸盐缓冲盐水。
  5. 孵育在10毫升抗体稀释缓冲液在4℃下用5%封闭溶液稀释过夜膜与第一抗体(腹水或杂交瘤上清液)。
  6. 洗MEMBRANË三次PBST再擦去过多的抗体。
  7. 在温和搅拌,在室温下1小时,阻断溶液1250:在1孵育用碱性磷酸酶缀合的山羊抗小鼠IgG的膜。
  8. 再次洗膜,并在5-溴-4-氯-3-吲哚基磷酸盐/对 - 氮蓝四唑氯化物孵育它(BCIP / NBT)磷酸酶底物混合物为10至20分钟,直到显色。
  9. 通过在蒸馏水几个变化洗膜终止反应。

4.点杂交

  1. 稀释肌肉上清液(协议1.1-1.4)在PBST 5%牛血清白蛋白(BSA)以适当的比例获得良好的信号:1:5的家畜和金枪鱼和1:25鲸类和密封。现货5微升样品到膜上。最小的区域,该解决方案通过采用缓慢它渗透(一般3-4毫米直径)。
  2. 在室温(干燥膜如<在30-60分钟的层流/ em>的),用封闭在培养皿溶液在室温下1小时阻止它,并用PBST清洗。
  3. 孵育初级抗体的膜(单抗从杂交瘤上清液在1:10,000或腹水流体在1:100 000 5%封闭溶液稀释的)在室温下1小时。
  4. 使用PBST洗涤膜3次,每次5分钟(1碱性磷酸酶缀合的山羊抗小鼠IgG:1.250,在5%封闭溶液)以除去过量的抗体,然后用第二抗体孵育它在室温下1小时。
  5. 再次洗膜,并在10至20分钟的BCIP / NBT磷酸酶底物混合物,直至显色孵化它。
  6. 通过在蒸馏水几个变化洗膜终止反应。

5.间接ELISA

  1. 制备洗涤缓冲液(0.002 1M咪唑缓冲盐水0.02%吐温20)。洗净板洗涤3次每个接下来的步骤(协议5.2-5.5)之间的缓冲。
  2. 准备1:25稀释涂料缓冲肌肉上清液(协议1.1-1.4)的。涂层的96孔ELISA板用100μl稀释的上清液在4℃下过夜,用在室温下1小时封闭缓冲液(在PBS中的1%BSA)阻止它。
  3. 制备1:2000稀释,用稀缓冲纯化mAb的和稀释的mAb添加100μl的各孔中。将培养板在室温下1小时。
  4. 加入山羊抗小鼠IgG缀合的辣根过氧化物酶(1:200稀释在稀释缓冲液中)进行进一步孵育。
  5. 添加过氧化物酶底物至每孔(100μl/孔)并孵育10至15分钟。
  6. 停止时通过彩色显影观察到过氧化物酶终止溶液(100μl/孔)的酶反应。
  7. 读在使用微板分光光度计450nm处的光密度。

6.制备胶体金标记的单克隆抗体的注意:胶体金溶液中,混合物的颜色应始终为红色。当黑色的沉淀物发现调节pH,单克隆抗体浓度,离心机转速。步骤6.1和6.2的优化步骤。

  1. 添加纯化的检测的mAb(50微克/毫升,3微升)至100μl随着pH值从5-9不同的胶态金溶液。该保持红色两小时的最小pH值被视为最适PH值。注意:在此研究中,0.1M碳酸钾用于调整胶体金(40纳米)溶液至pH 8.0(最适pH)。
  2. 至100微升胶体金溶液的加入各种数量的纯化检测mAb的(500微克/毫升,1-20微升)在pH 8.0。注意:在此研究中的最佳浓度为6微克/毫升(无黑色沉淀)。
  3. 根据上述结果,添加的纯化检测单克隆抗体滴加至10ml胶体金溶液的60微克。轻轻乳化混合物在室温下10分钟。广告D 2毫升在PBS中的5%BSA的溶液(pH 7.4)至该混合物中并在室温下轻轻地乳化15分钟,以减少背景干扰。
  4. 离心该混合物以10,000 xg离心在4℃下30分钟。
  5. 小心地取出与未缀合的抗体上清液并暂停将所得丸粒在4毫升的PBST含有1%BSA和0.1%吐温20,并重复离心和悬浮液数次。
  6. 暂停的最终沉淀在1ml PBST并储存于4℃直至使用。

7.免疫带建设

注意: 图1显示了免疫条设计。制备和组装<以延长储存寿命(20%相对湿度(1年)在低湿度的实验室环境条件下的条带)>。垫和膜的尺寸为:结合垫300毫米×10毫米,吸收垫300毫米×24毫米,样品垫300毫米×24毫米,NC膜300毫米×25毫米,粘贴板300毫米×80毫米。

  1. 添加来自步骤6.6的胶体金标记的单克隆抗体溶液用微量至饱和的偶联物垫,然后组装前在37℃下使其干燥1小时。
  2. 在控制区分配抗原特异性捕获在测试区单克隆抗体(500微克/毫升)和兔抗小鼠IgG(500微克/毫升),用于使用吸液管或免疫条打印机NC膜上检测的mAb。这两个区域之间保持距离(> 5mm)的,以避免干扰。
  3. 粘贴复合垫,吸水垫和NC膜与双面胶带粘贴板。
    注意:通过约2mm重叠在NC膜的每一侧的垫。不适当带建设将导致不完全的测试。
  4. 将在结合垫样品垫(2毫米),将其粘贴在纸板。
  5. 创建具有切纸机6毫米宽的条带。包在铝箔袋干燥剂的条带,且他们在4℃储存直至使用。

8.交叉反应试验

  1. 均匀0.03克原肌样品用竹签或研磨棒1ml的PBS(含有0.1%BSA)在1.5毫升离心管中。
  2. 由端相对的测试区域保持条和样品垫部浸入试样5-10分钟,并直接观察结果。
    1. 可选:收集500微升上层清液,并转移到一个新的离心管中。
      注意:如果当带材被直接浸透到上清液中的信号并不明显建议此步骤。
  3. 一式三份测试各种肌肉样品。
    注:在这里,我们测试的金枪鱼,鸡肉,密封,15种鲸类动物5种陆生哺乳动物。
  4. 有五个独立的监察员8.3重复五次, 在总使用575条。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

单克隆抗体的特点

我们分别开发了两种抗体1单克隆抗体(CGF5H9和CSF1H13)承认两个合成肽(MKASEDLKKHGNTVLC和AIIHVLHSRHPAEFGC),鲸类MB,而这些被用来构建一个三明治式胶体金免疫层析试纸的快速检测鲸类MB的。 图2示出CGF5H9检测鲸类和其他哺乳动物作为在近似17 kDa的预测分子量的单个染色带。该小须鲸( 鲸acutorostrata)显示出比其他鲸类的频段相对微弱带。乐队缺席金枪鱼,鸡和密封件,而在约50 kDa的一个带猪观察。虽然有用于猪和金枪鱼多个非特异性条带,CSF1H13是高度特异性的,因为它仅与在近似17 k的预测分子量鲸类和密封件作为带反应大。小须鲸只示出了在1:10与没有在1:25观察到的信号(数据未示出)的强烈信号。 图2示出了在斑点印迹相同的结果。

图3A示出了CGF5H9演示鲸类,兔,狗,山羊和奶牛(OD值> 3.0)正信号;猪弱阳性信号(OD值= 1.5);海豹,鸡和金枪鱼消极的信号。 图3B显示CSF1H13表达对鲸类和密封件高亲和力(OD值> 3.0)。无论CSF1H13和CGF5H9可与所有四个鲸类强烈反应。这四个品种都是从不同的家庭(小须鲸:Balaenopteridae;宽吻海豚:海豚科,侏儒抹香鲸:Kogiidae;江豚:Phocoenidae),表明了广大反应性不同的鲸类。

对于带建设,CGF5H9,承认Ť他鲸类和其他哺乳动物的MBS,是胶体金标记和用作检测抗体结合肌红蛋白,和CSF1H13涂覆在测试线仅捕获鲸类和密封件的Mbs的。因此,测试线旨在显示当两个单克隆抗体检测鲸类兆一个积极的信号。因为来自非鲸类动物兆只能由这两个单克隆抗体中的一个被检测到,该检测线示出了当从其他动物肌肉样品进行测试的否定结果。控制线总是显示阳性结果,因为兔抗小鼠IgG结合胶体金标记CGF5H9。在控制线A失败结果表明该材料在带材的质量很差。

试纸测
图4示出在两个测试线和控制线的信号频带,当使用鲸类肌肉样品。当样品从鲸类不是,只有在控制线的Wi的单一条带TH在测试线没有带。成功的结果可以直接在5-10分钟均质0.03克肌肉的使用塑料或竹签含有0.1%BSA和带状浸泡入混合物10毫升的PBS后观察到。测试15鲸类,一式三份八个非鲸类后,特异性(非鲸类样本的百分比正确识别)和灵敏度(鲸类样本的百分比正确识别)都是100%。

图1
图1. 免疫带的设计,所有的组件都仔细分层到塑料背衬卡,以便它们相互重叠。这允许试剂和样品通过膜和吸收垫向上流动。 T:试验区。 C:控制区。这个数字已经从罗,C 转载快速的免疫胶体金对于小鲸鱼肉限制非法贸易和消费:保护和公众健康的影响公共科学图书馆·ONE 8,e60704(2013年)。 DOI:10.1371 / journal.pone.0060704 请点击此处查看该图的放大版本。

图2
图2. Western blot和使用杂交瘤上清点印迹分析( )CGF5H9,(B)CSF1H13。两个杂交瘤上清液可以在近似17 kDa的预测分子量检测鲸类作为一个单一的染色带。 MW:小须鲸,BND:宽吻海豚,DSW:侏儒抹香鲸,FP:江豚,PKW:小虎鲸,N:PBS(阴性对照)。这个数字已经从罗,C 再现对于C快速免疫胶体金etacean抑制肉非法贸易和消费:保护和公众健康的影响公共科学图书馆·ONE 8,e60704(2013年)。 DOI:10.1371 / journal.pone.0060704 请点击此处查看该图的放大版本。

图3
图3. 用纯化的单克隆抗体不同物种的肌肉提取物的间接ELISA。(A)CGF5H9,(B)CSF1H13。只有鲸类可以同时在单克隆抗体产生强烈的积极信号。这个数字已经从罗,C 迅速转载免疫胶体金试纸条的小鲸鱼肉限制非法贸易和消费:。保护和公众健康的影响公共科学图书馆·ONE 8,e60704(2013年)。 DOI:10.1371 / journal.pone.0060704。 请点击此处查看该图的放大版本。

图4
图4. 特异性免疫胶体金带T:。检测线。 C:控制线。仅当使用鲸类肌肉样品,成功的结果(在两个测试线和控制线信号频带)可以观察到。 ( )非鲸类样本:1:牛。 2:山羊。 3:猪。 4:狗。 5:兔子。 6:金枪鱼。 7:鸡。 8:斑海豹( 斑海豹 )。 (B)鲸类样本:1:小须鲸( 鲸acutorostrata)。 2:角岛鲸( 鲸omurai)。 3:宽吻海豚( 宽吻海豚aduncus)。 4:宽吻海豚(T.截 )。 5:沙捞越海豚(Lagenodelphis法政</ EM>)。 6:印度太平洋驼背豚( 中华白海豚 )。 7:灰海豚( 鲸灰色链霉菌 )。 8点斑原海豚( 原海豚attenuata)。 9:糙齿海豚( 速记bredanensis)。 10:小虎鲸(Feresa attenuata)。 11:短鳍领航鲸(Globicephala macrorhynchus)。 12:瓜头鲸(Peponocephala恋父 )。 13:侏儒抹香鲸(Kogia司马 )。 14:小抹香鲸(K.短头蛙属 ) 15:江豚( 江豚 )。这个数字已经从罗,C 迅速转载免疫胶体金试纸条的小鲸鱼肉限制非法贸易和消费:。保护和公众健康的影响公共科学图书馆·ONE 8,e60704(2013年)。 DOI:10.1371 / journal.pone.0060704 请点击此处查看该图的放大版本

鲸类 非鲸类
小抹香鲸(Kogia短头蛙属斑海豹( 斑海豹
侏儒抹香鲸(Kogia司马狗( 家犬
短鳍领航鲸(Globicephala macrorhynchus) 兔( 家兔
瓜头鲸(Peponocephala恋父猪( 野猪
小虎鲸(Feresa attenuata) 山羊( 山羊属
点斑原海豚( 原海豚attenuata) 牛( 普通牛
宽吻海豚( rsiops截) 鸡肉( 鸡内金
宽吻海豚( 宽吻aduncus) 黄鳍金枪鱼( 黄鳍金枪鱼
沙捞越海豚(Lagenodelphis法政
印度太平洋驼背豚( 中华白海豚
糙齿海豚( 速记bredanensis)
灰海豚( 鲸灰色链霉菌
江豚( 江豚
小须鲸( 鲸acutorostrata)
角岛鲸( 大村鲸 I)

表1物种从肌肉是山口反恐执行局在这项研究中进行测试。品种包括金枪鱼,鸡肉,印章,5种陆生哺乳动物,15种鲸类(4科)。

种类登录号
小须鲸( 鲸acutorostrata) P02179
俾格米人的布氏鲸( 布氏鲸 Q0KIY2
座头鲸( 学名Megaptera novaeangliae) P02178
灰鲸(Eschrichtius粗壮 P02177
抹香鲸(Physeter鲷 P02185
小抹香鲸(Kogia短头蛙属 Q0KIY5
侏儒抹香鲸(Kogia司马 P02184
短期beakeð普通海豚( 海豚DELPHIS) P68276
长肢领航鲸(Globicephala MELAS) P02174
杀人鲸(Orcinus海怪 P02173
瓜头鲸(Peponocephala恋父 Q0KIY3
点斑原海豚( 原海豚attenuata) Q0KIY6
宽吻海豚( 宽吻海豚 P68279
港湾鼠海豚( 鼠海豚属鼠海豚属 P68278
亚马逊河豚(INIA geoffrensis) P02181
朗文的喙鲸(Indopacetus pacificus) Q0KIY9
哈氏中喙鲸(Mesoplodon carlhubbsi) P02183
柯氏喙鲸( phius cavirostris) P02182
斑海豹( 斑海豹 P68080
牛( 普通牛 P02192
山羊( 山羊属 B7U9B5.3
马( 雅科仕caballus) P68082
猪( 野猪 P02189
狗( 家犬 P63113
鸡肉( 鸡内金 P02197
鸵鸟( 鸵鸟属野骆驼 P85077
黄鳍金枪鱼( 黄鳍金枪鱼 P02205

表2.本研究中与各自的GenBank登录号中使用肌红蛋白的序列。品种包括金枪鱼,鸡,鸵鸟,国内哺乳动物,密封件和18种鲸类(7户)。该表已经从罗,C 迅速转载免疫胶体金试纸条的小鲸鱼肉限制非法贸易和消费:。保护和公共卫生公共科学图书馆·ONE 8的影响,e60704(2013年)。 DOI:10.1371 / journal.pone.0060704。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

使用缀合载体蛋白的合成肽相比,它的同源蛋白是显着更有效。对于基于夹层技术,因为单克隆抗体是使用具有已知相对位置的表位开发的,在本研究的两种单克隆抗体不太可能彼此的与靶抗原表位的相互作用来干扰。此外,天然蛋白和合成肽结合物免疫的小鼠的抗体之间的反应性可能比天然蛋白和与天然蛋白19产生的抗体之间的反应性更强。因此,使用合成肽缀合物的建议适当抗肽mAb的有效免疫程序和生成。

蛋白质的结构主要涉及的氨基酸中的多肽链的序列。每个氨基酸都有其侧链导致特定性能,并且稍微改变的氨基ACIð序列导致结构的变化。因为具有10-20个氨基酸长度的肽是理想的抗体制剂,在C-末端区域的合成肽(免疫原)的长度增加至确保核心抗原区将被识别。因此,导致不同的表位结构的各种动物的Mbs的之间的氨基酸残基可以被有效地鉴别。例如, 图3A示出输入的肽设计,有助于CGF5H9与鲸类但负密封强烈反应。另一个例子是朝向CGF5H9的鸡和狗的不同亲和力虽然鸡具有相同序列,在核心抗原位点2的狗这表明在外部区域的序列差异可能导致结构的改变,从而可变结合抗原和抗体之间的亲和力。

Western印迹,点印迹和间接ELISA中所用我们筛选合适的单克隆抗体的方法。 Western印迹被广泛用于检测在组织提取物或匀浆特定蛋白质。在该技术中,凝胶电泳所使用的多肽的长度来分离变性蛋白。因此,能够确认,如果所述信号指示所述预测的蛋白质分子量。然而,该检测结果(正或负,强或弱信号)可能没有表示抗原抗体的实际情况结合,因为使用变性的蛋白质。因此,点印迹可用于第二级筛选。斑点印迹是用于检测蛋白质的技术。它代表了免疫印迹法的简化。在斑点印迹,含有待检测的分子的混合物中,在膜为点直接应用。这不同于一个印迹因为蛋白质样品没有变性。注意,这种技术提供了在靶生物分子的大小没有信息,和一个单一的点就会出现如果两个莫检测不同大小的lecules。最后,间接ELISA,以便生成可以适当地量化的信号用于配体结合测定。它提供了单抗特性的详细信息,从而方便了Strip结构。

在肌肉MB的浓度取决于收集位置是可变的。例如,游泳肌肉(轴向肌)在鲸类有MB的一个显著更高含量与非游泳肌肉比较,从年轻鲸类样品将具有因为在整个动物的生活20兆浓度增加低兆浓度。最初,CSF1H13,只捕捉鲸类和密封件的兆,意欲是胶体金标记,并检测抗体,以及CGF5H9,承认许多物种的兆,将是对检测线捕获抗体。我们假设,该检测抗体应更加具体和捕获抗体应更一般。然而,弱阳性信号上检测线发现当使用具有低兆浓度鲸类样品(数据未显示)。当作为代表性的结果说明被逆转两种单克隆抗体的位置的问题得到解决。良好的信号,甚至表现出一个新生儿鲸类动物(绞合角岛鲸)( 图4)。目前还不清楚的特点和mAbs的浓度是否有助于这种现象。

在这项研究中,用PBS匀浆冻融肌肉样品在带状试验中使用。其它样品的条件和制备方法可能影响结果。例如,盐溶蛋白质,例如兆应使用的PBS,而不是纯水中提取。否则,提取可能不足,这可能导致的异常的结果。适当的提取缓冲液:肉类样本比例是条结果成功演绎的部分原因。大amouNT对照样品(如家畜)的(0.3克在1毫升缓冲液)可能导致阳性结果和模糊的背景。然而,在该研究中(1:0.03)中使用的比率产生正确的结果。只有新鲜肌肉样品可用于本条带测试。蛋白可水解或某些处理(如由酱油和沸腾固化),这可能会导致不仅对鲸类肌肉样品,而且还从其他动物的样品阳性结果后变性(未示出数据)。因此,有人建议,可变样品来源和不同施工设计方案应带的开发过程中使用。

总之,本协议描述了两种单克隆抗体鲸类的兆强烈反应的发展,这些单克隆抗体应用在快速试纸区分海豹等动物鲸类的兆。虽然对于小鲸鱼肉的识别可靠基于PCR的DNA分析是可用的12,它我劳动密集且耗时的。快速测试条是一个可靠的和快速的技术,该技术可以在现场被用来识别鲸类肉类,这对于管理机构21高度期望的。它很可能是该带材可用于从动物如马或猪检测特定Mbs的开发。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Phosphate buffered saline AMRESCO J373
Protein G HP SpinTrap  GE Healthcare 28-9031-34 spin column containing Protein G Sepharose
IsoStrip Mouse Monoclonal Antibody Isotyping Kit Roche 11493027001 Isotyping Strips, precoated with subclass- and light-chain-specific anti-mouse-Ig antibodies
Mini Trans-Blot Bio-Rad 170-3935
Nitrocellulose membrane Whatman Z613630
Antibody blocker solution  LTK BioLaboratories To minimize nonspecific binding interactions of nonspecific IgG in the samples
BCIP/NBT phosphatase substrate  KPL 50-81-00
Protein Detector HRP Microwell Kit, Anti-Mouse KPL 54-62-18
Nunc Immunoplate MaxiSorp ELISA plate Thermo Fisher Scientific EW-01928-08
Multiskan EX ELISA reader  Thermo Electron Corporation 51118170
Colloid gold (40 nm) solution  REGA biotechnology Inc. 40-50 nm is appropriate for immunostrip
Bovine serum albumin Gibco 15561-020
Rapid test immno-strip printer REGA biotechnology Inc. AGISMART RP-1000  Only suited for small scale production of immunostrips for research and development purposes
Strip components (NC membranes, sample pads (#33 glass, S&S), conjugate pads (#16S, S&S) and absorbent pads (CF6, Whatman)) REGA biotechnology Inc.
Freund’s adjuvant and incomplete Freund’s adjuvant  Sigma-Aldrich F5881, F5506 Used to produce water-in-oil emulsions of immunogens
Acrylamide, gel buffer, ammonium persulfate (APS), tetramethylethylenediamine (TEMED)  Protech Gel preparation for SDS-PAGE
Coomassie brilliant blue R-250 Bio-Rad 1610436 Protein staining in SDS-PAGE gels
Laemmli sample buffer and β-mercaptoethanol Bio-Rad 1610737, 1610710 Dilute protein samples before loading on SDS-PAGE gels

DOWNLOAD MATERIALS LIST

References

  1. Robards, M. D., Reeves, R. R. The global extent and character of marine mammal consumption by humans: 1970-2009. Biol. Conserv. 144, 2770-2786 (2011).
  2. Booth, S., Zeller, D. Mercury, food webs, and marine mammals: implications of diet and climate change for human health. Environ. Health Perspect. 113, 521-526 (2005).
  3. Endo, T., et al. Total mercury, methyl mercury, and selenium levels in the red meat of small cetaceans sold for human consumption in Japan. Environ. Sci. Technol. 39, 5703-5708 (2005).
  4. Tryland, M., et al. Human pathogens in marine mammal meat. Norwegian Scientific Committee for Food Safety (VKM). , (2011).
  5. Matsunaga, T., et al. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 51, 143-148 (1999).
  6. Dalebout, M. L., Helden, A. V., van Waerebeek, K., Baker, C. S. Molecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae). Mol. Ecol. 7, 687-694 (1998).
  7. Dalmasso, A., et al. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol. Cell. Probes. 18, 81-87 (2004).
  8. Kesmen, Z., Sahin, F., Yetim, H. PCR assay for the identification of animal species in cooked sausages. Meat Sci. 77, 649-653 (2007).
  9. Liu, L., Chen, F. -C., Dorsey, J. L., Hsieh, Y. -H. P. Sensitive Monoclonal Antibody-based Sandwich ELISA for the Detection of Porcine Skeletal Muscle in Meat and Feed Products. J. Food Sci. 71, 1-6 (2006).
  10. Kotoura, S., et al. A Sandwich ELISA for the Determination of Beef Meat Content in Processed Foods. Food Sci. Techno. Res. 15, 613-618 (2009).
  11. Hsieh, Y. H., Chen, Y. T., Gajewski, K. Monoclonal antibody-based sandwich ELISA for reliable identification of imported Pangasius catfish. J. Food Sci. 74, 602-607 (2009).
  12. Ross, H. A., et al. DNA surveillance: web-based molecular identification of whales, dolphins, and porpoises. J.Hered. 94, 111-114 (2003).
  13. Ngom, B., Guo, Y., Wang, X., Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem. 397, 1113-1135 (2010).
  14. Muldoon, M. T., Onisk, D. V., Brown, M. C., Stave, J. W. Targets and methods for the detection of processed animal proteins in animal feedstuffs. Int. J. Food Sci. Technol. 39, 851-861 (2004).
  15. Rao, Q., Hsieh, Y. H. Evaluation of a commercial lateral flow feed test for rapid detection of beef and sheep content in raw and cooked meats. Meat Sci. 76, 489-494 (2007).
  16. Tamura, K., et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739 (2011).
  17. Atassi, M. Z. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry. 12, 423-438 (1975).
  18. Zhang, C. Hybridoma technology for the generation of monoclonal antibodies. Methods Mol. Biol. 901, 117-135 (2012).
  19. Kao, D. J., Hodges, R. S. Advantages of a synthetic peptide immunogen over a protein immunogen in the development of an anti-pilus vaccine for Pseudomonas aeruginosa. Chem. Biol. Drug Des. 74, 33-42 (2009).
  20. Dolar, M. L., Suarez, P., Ponganis, P. J., Kooyman, G. L. Myoglobin in pelagic small cetaceans. J. Exp. Biol. 202, 227-236 (1999).
  21. Lo, C., et al. Rapid immune colloidal gold strip for cetacean meat restraining illegal trade and consumption: implications for conservation and public health. PLoS ONE. 8, e60704 (2013).

Tags

分子生物学,第113,鲸类,单克隆抗体,肌红蛋白,ELISA,免疫印迹,胶体金免疫层析试纸
对肌红蛋白鲸类检测基于金免疫层析胶体试纸条的研制
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Chan, K. W., Lo, C., Chu, C. S.,More

Chan, K. W., Lo, C., Chu, C. S., Chin, L. T., Wang, Y. T., Yang, W. C. Development of a Colloidal Gold-based Immunochromatographic Test Strip for Detection of Cetacean Myoglobin. J. Vis. Exp. (113), e53433, doi:10.3791/53433 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter