Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

从小鼠羊水细胞多能干细胞使用转座子系统的生产

Published: February 28, 2017 doi: 10.3791/54598

Introduction

产前诊断是一个重要的临床工具,遗传性疾病( 染色体异常,单基因或多基因/多因素疾病)和先天性畸形( 先天性膈疝,囊性肺部病变,exomphalos,腹)评价。羊水(AF)细胞是简单怀孕的第二个三个月期间定期调度的程序,以获取( 羊膜穿刺术和amnioreduction)或剖腹产1,2。从产前或新生儿患者AF细胞的可用性提供了使用这种源再生医学的可能性,一些研究人员调查处理利用AF 3,4,5,6分离出来的干细胞群不同的组织损伤或疾病的可能性,7,8,9,10,11,12。容易地从患病的患者获得的AF细胞,其中的疾病是经常固定的时间窗口的可能性,开辟了道路使用用于重编程的目的本细胞来源的想法。的确,从AF细胞的诱导的多能干(iPS细胞)可以在用于体外药物测试或用于组织工程的方法感兴趣的细胞分化,为了分娩前准备适当的患者特异性治疗。许多研究已经证实的AF细胞的能力进行重新编程并分化成范围广泛的细胞类型13,14,15,16,17 <的/ SUP>,18,19,20,21,22,23,24,25,26,27。

由于通过四个转录因子(Oct4的,SOX2,cMYC的和Klf4)强制表达的发现高桥和重新编程体细胞的山中伸弥28日 ,取得了长足的重新编程领域取得。考虑到不同的方法,我们可以病毒和非病毒方法之间区别。所述第一预计的病毒载体(逆转录病毒和慢病毒),它们具有高效率,但在反转录病毒转基因的通常不完全沉默,具有部分重编程的细胞系的两种后果和风险的使用插入诱变29,30,31。的非病毒方法使用不同的策略: 质粒,载体,基因,蛋白质,转座子。自由的转基因序列的iPS细胞的推导的目的,以规避渗漏的转基因表达和插入突变的潜在有害影响。在所有的上述的非病毒策略,所述piggyBac转(PB)转座子/转座系统只需要在反向末端重复侧翼的转基因和转座酶的瞬时表达来催化插入或切除事件32。在使用转座子上的其它方法iPS细胞产生的优点是获得免费矢量-iPS细胞与非病毒载体的方法,其中显示的逆转录病毒载体的相同的效率的可能性。这可以通过对reprogr集成座子编码的痕量少切除amming以下在iPS细胞33转座的新的瞬时表达的因素。鉴于PB为在不同的细胞类型34,35,36,37有效,是更适合于临床方法相对于病毒载体,并允许生产无异物-iPS细胞的违背使用的生物外源性电流病毒产生的协议条件下,该系统用于从鼠的AF获得iPS细胞。

在这里我们建议按照已经发表的作品展示从小鼠AF细胞(iPS-AF细胞)38生产多能干的iPS克隆的详细的协议。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

所有的程序都是按照意大利法律。鼠AF样品来自孕鼠13.5天交配后(DPC)从C57BL / 6-的Tg(UBC-GFP)30Scha / J小鼠被称为GFP收获。

1.转座子生产

注意:使用标准克隆程序生成座子表达载体。使用商业试剂盒制备用于小鼠的AF细胞转染的质粒DNA。

  1. 混合的质粒DNA的10毫微克,在1.5ml微量离心管中加入50μl的DH5α细菌。在冰上孵育的微量离心管20分钟。
  2. 在42℃下进行40秒的热休克。
  3. 放置微量离心管在冰上2分钟。
  4. 加入250微升预热(37°C)LB培养基(LB)肉汤。摇动(300转),在37℃30分钟。
  5. 蔓延30微升各变换到LB平板上用0.1mg / ml氨苄青霉素。允许板干燥并在37℃OV孵育反转ernight。
  6. 第二天,下午,挑3个菌落,用无菌200微升提示,从每个转化和转移到0.1毫克/毫升的LB放大器。
  7. 摇动,在37℃过夜(转速300rpm)的细菌。
  8. 对于质粒纯化使用商业试剂盒。股票的质粒在-20℃。

2.小​​鼠胚胎成纤维细胞(MEF)文化

  1. 在6孔板的涂层用0.1%明胶
    1. 罩加入1毫升无菌0.1%明胶的每个六个孔的下涂层板。让在培养箱中(37℃)明胶聚合1小时。
    2. 丢弃过量的,并干燥板1小时。
    3. 用封口膜在室温下以密封和存储板。
  2. MEF的灭活丝裂霉素
    1. 解冻使用37℃浴4×10 6 MEF细胞的小瓶。
    2. 在培养皿(150毫米)MEF培养基罩种子MEF。
    3. 培养细胞在37℃和5%的CO 2。
    4. (注意)加入丝裂霉素C(5毫克/毫升),当细胞融合。
    5. 地方细胞进入培养箱(37℃和5%CO 2)3小时。
    6. 用丝裂霉素C.洗涤细胞除去培养基用1×磷酸盐缓冲盐水(PBS)的三倍。
    7. 加2ml商业胰蛋白酶和地点细胞进入37℃培养箱中培养5分钟。后,加入18毫升隔断介质停止胰蛋白酶的反应。
    8. 算使用根据制造商的协议的burker室中的细胞。
    9. 离心细胞,在145×g离心5分钟。弃去上清液。
    10. 种子60,000个细胞/上0.1%明胶包被的板灭活的MEF的厘米2。
    11. 培养细胞在37℃下24小时和5%的CO 2,播种AF和/或的iPS-AF细胞前。

3.鼠标AF细胞分离

  1. 设置定时交配,检查阴道PLU合房24小时后GS。
  2. 观察到13.5天,通过颈椎脱臼牺牲怀孕水坝。
  3. 清洁用70%的乙醇的动物的腹壁。
  4. 使用剪刀,执行中线剖腹切开腹壁的长度来访问进入腹腔。
  5. 揭露使用镊子子宫。除去用剪刀和转让子宫的100毫米的培养皿充满无菌1×PBS中置于冰上。
  6. 使用立体显微镜收集AF在10倍的放大倍率。
  7. 握住钳子子宫和用剪刀取出子宫壁。要小心,以避免胎膜和随之而来的羊水泄漏任何损害。
  8. 收集胎儿的100毫米的培养皿充满无菌1×PBS中,并放置在冰上。
  9. 抓住一个胎儿用细镊子点和地点的胎盘在干净的100毫米的培养皿。
  10. 取出卵黄囊用细镊子点。
  11. AF收集之后,洗净用无菌1×PBS中的每个胎儿补充有1%胎牛血清(FBS),并收集到15ml含有自动对焦锥形管中。
  12. 离心机对焦在145×g离心5分钟。引擎盖下去除上清,种子沉淀的AF细胞。

4.鼠标AF细胞培养

  1. 鼠标AF细胞接种
    1. 播种前一天,准备与丝裂霉素C处理的MEF 0.1%明胶包被的6孔板中。
    2. AF收集之后,使用AF培养基种子从羊膜穿刺术获得的细胞(来自6胎儿得到约1×10 7个细胞)到有丝分裂失活的MEF。
    3. 培养细胞在37℃和5%的CO 2,更换培养基每隔一天。
    4. 经过7天的文化,跨FECT AF细胞按照以下所述的步骤。

5.转染,IPS-AF细胞的产生与文化

注:鼠标AF细胞与PB-tetO2-IRES-OKMS座子的质粒转染,在转座表达质粒(mPBase)结合,并与反四环素反式(PB-CAG-rtTA)转座子的质粒。所有质粒通过安德拉什纳吉33教授提供。

  1. 在1.5ml微量离心管:混合PB-tetO2-IRES-OKMS的1微克用mPBase 0.5微克和0.5 PB-CAG-rtTA的微克(2微克总DNA)。
  2. 稀释该DNA到100微升无血清培养基(Dulbecco改良的Eagle培养基 - DMEM)中。
  3. 添加8微升转染试剂( 例如 ,FUGENE)(在质粒DNA的比率:2微克(DNA)至8微升转染试剂转染试剂)放入含有DNA 1.5毫升离心管中。
  4. 孵育转染试剂/ DNA混合物在室温下15分钟。
  5. 逐滴加入100微升每孔的转染试剂/ DNA混合物的与小鼠AF细胞的6孔平板,并通过温和涡旋分布,用2mL的最终体积/孔。离开24小时。
  6. 一天后,通过用补充有1.5微克/毫升的强力霉素(2毫升的媒体的每个孔)新鲜的iPS-AF介质供给细胞诱导的山中的因素(Oct4的,Klf4的,cMYC的,Sox2的)的表达。
  7. 每天给细胞,而不通道,用新鲜的含DOX培养基(保持辅以强力霉素,直到点5.13介质细胞)。
  8. 观察为mCherry表达在24小时内,并每日为集落形成(集落通常在转染后20到30天之间出现)细胞。
  9. 殖民地采摘前一天,准备用丝裂霉素C处理的MEF 96孔培养板。
  10. 在全光照量50微升接单菌落ガ200μL的吸移管,并依次传送,使它们成为单独的孔96孔板中。
  11. 一天后,通过加入50μl商业胰蛋白酶的解离每一菌落成单个细胞,并在37℃下孵育5分钟。
  12. 移液器上下分列的殖民地。
  13. 转让50载涂96孔板0.1%的明胶分离的殖民地与灭活MEF新井的胰蛋白酶微升充满100微升辅以强力霉素新鲜的iPS-AF媒介。
  14. 当细胞达到60-70%汇合时,分割成一个24孔板的孔中。
  15. 当细胞达到60-70%汇合,拆1:2两口井,一用强力霉素和其他没有强力霉素,以验证是否殖民地也都出现在条件无强力霉素。
  16. 继续保持的iPS-AF克隆,多西环素独立,灭活MEF在IPS-AF网上平台。
  17. 培养在37℃和5%的CO 2中,细胞通道每天anging网上平台。

6.碱性磷酸酶染色

  1. 按照制造商的协议来执行碱性磷酸酶染色每当有强力霉素独立的iPS-AF细胞的外观。

7.免疫

  1. 每当有强力霉素独立的iPS-AF细胞的出现,种子与灭活的MEF 24孔板的孔150,000个细胞/厘米2,并在37℃和5%的CO 2培养细胞48小时。
  2. (注意)加入每4%低聚甲醛(PFA)的井300微升,在室温下15分钟固定细胞。
  3. 添加300微升0.1%的NP-40通透细胞的。
  4. 冲洗细胞与300微升0.1%PBS-吐温20。
  5. 加入300微升封闭缓冲液(在1×PBS中的10%马血清)中在室温下1小时。
  6. 使用以下主要抗体:Oct4的(1:80),Sox2的(1:80),Klf4的(1:80),Nanog的(1:100)和SSEA1(1:80)。稀释SSEA1用1%牛血清白蛋白(BSA),10%正常山羊血清,0.3M甘氨酸在0.1%PBS-Tween-20的。稀释在1×PBS中的10%马血清的所有其它抗体。
  7. 孵育抗体过夜,在4℃。
  8. 用300μl0.1%的PBS-Tween-20中的冲洗。
  9. 使用在1X PBS中的10%马血清稀释的二级抗体:Alexa594缀合的山羊抗小鼠IgG(1:200),Alexa594缀合的鸡抗山羊IgG(1:200),Alexa594缀合的鸡抗兔IgG (1:200),Alexa568缀合的山羊抗小鼠IgM(1:200)。孵育在室温下2小时。
  10. 用1X PBS冲洗。
  11. 染色核用Hoechst溶液(1:10,000)在1×PBS中。

8. 在体外细胞分化

  1. 为形成悬滴胚状体(EBS),培养单滴(2,000个细胞/ 20微升)到培养皿盖子,用分化培养基。
  2. 孵化的菜在37℃和5%的CO 2 4天。
  3. 转移到EB中100毫米细菌级的菜肴在悬浮培养在分化培养基3天。
  4. 板胚涂有基底膜基质(DMEM中1:10稀释)24孔板另外14天。
  5. 对于免疫荧光分析,使用第一抗体:T(1:100),αfp(1:200)和TUBB3(1:500)37。

9. 在体内形成畸胎瘤

  1. 注入100μl的1×PBS中含有1×10 6的iPS-AF细胞进入的Rag2的后肢的肌肉- / - γC - / -小鼠。
  2. 通过细胞注射6周后颈椎脱位牺牲小鼠。
  3. 取出肿块,其大小区分,从小鼠用于以下分析的后肢。
  4. 使用切低温恒温器异戊烷冷冻肿瘤的7-10微米厚的横截面。
  5. 对于苏木的ð曙红(HE)染色:
    1. 用HE染色,以评估肿瘤组织组合物,按照制造商的协议。
  6. 对于免疫过氧化物酶染色:
    1. 固定畸胎瘤切片,用4%PFA中于室温下15分钟。
    2. 用0.1%的Triton X-100透化。
  7. 用以下抗体孵育:TUBB3(1:100),αfp(1:50)和αSMA(1:100),在1X PBS中的1%BSA稀释。孵育在37℃(对TUBB3)1小时或过夜,在4℃下(对于其它抗体)。
  8. 用100%甲醇20分钟块过氧化物酶。
  9. 孵育在37℃下用45分钟的第二抗体抗小鼠HRP缀合(1:150)。
  10. 用1X PBS冲洗。
  11. 与过氧化物酶(HRP)底物(见材料表 )5分钟孵育。
  12. 用自来水冲洗5分钟。
  13. 与苏木QS染色,持续9秒。
  14. 用自来水冲洗。
  15. 从电池10 RNA提取

    1. 根据制造商建议的协议使用商业的RNA提取试剂盒。

    从畸胎瘤11 RNA提取

    1. 均质使用杵和研钵和液氮,以避免解冻样品的畸胎瘤。
    2. 称取25毫克的组织。
    3. 添加1毫升的商业试剂提取RNA和氯仿的200微升。
    4. 在室温下孵育5分钟。
    5. 离心机以13,000 xg离心4℃15分钟。
    6. 转移澄清的上清液至新管。
    7. 以纯化的RNA,根据制造商的方案使用商业的RNA提取试剂盒。

    12.反转录聚合酶链反应

    1. 合成使用反转录(RT)-polymerase链反应(PCR)和寡聚(dT)雅逆转录酶第一链cDNA叮叮制造商的协议,获得50纳克/ cDNA的微升。在10毫微克/微升的浓度与无RNA酶的水稀释的cDNA。
    2. 利用RT-PCR的DNA聚合酶根据制造商的协议,使用1纳克执行/ cDNA的微升。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

为了评估重新编程的能力,小鼠的AF细胞从GFP小鼠的胎儿收集。细胞用圆形座子的质粒PB-tetO2-IRES-OKMS,它表示连接到mCherry荧光蛋白在多西环素诱导的方式山因子(Oct4的,SOX2,cMYC的和Klf4)转染,和反向四环素式激活(PB- CAG-rtTA)与转座表达质粒(mPBase)一起质粒。小鼠的AF细胞1周超过MEF饲养层体外膨胀后的Oct4,Klf4的,cMYC的和Sox2染。对于外源因子的表达,强力霉素的天加入在1.5微克/ mL的浓度转染后,如前所述39。的mCherry的表达从强力霉素加成24小时,这表明转染后可见。用ES样形态的第一个出现菌落DOX后20天ycycline感应被挑选出来,30天;转染后。这些菌落接种在灭活成纤维细胞饲养层。采摘后,存活的克隆维持在补充有强力霉素一些段落中,直到发现是强力霉素独立于复制井33。

小鼠iPS-AF克隆不同的参数进行了评价:mCherry表达,碱性磷酸酶染色,多能性标志物OCT4,SOX2,Klf4的,Nanog的和SSEA1,外源性和内源性多能性基因(OCT4,Klf4的,cMYC的和Sox2)的表达蛋白的表达在体外 (EBS) 和体内 (畸胎瘤测定)的分化。他们履行了评估,以验证其多能性的所有标准,总结在图1。

图1
图1: 鼠标AF GFP + 细胞 的重新编程 的iPS-AF GFP +细胞(A),多西环素独立的殖民地均为阴性mCherry的表达,积极为碱性磷酸酶(ALP)染色。比例尺= 250微米和100微米。 (B)表达OCT4,SOX2,Nanog的,和Klf4的稳定SSEA1多西环素独立的iPS-AF GFP +细胞的代表图像。比例尺= 100微米。 (C)的外源(基于向量的引物,Tg)和内源性(Oct4的 ,Klf4的,cMYC的Sox2)的基因的表达的RT-PCR分析。 β-2-微球蛋白 (B2M)被认为是一种管家基因。多西环素(96小时) - 重编程的细胞系在存在(+)或不存在生长()。 R1 ES细胞被用作对照。 (PCR面板已从贝尔坦等改性。38 四 )注入的iPS-AF GFP +细胞向的Rag2的后肢6周后获得的畸胎瘤的大体外观- / - γC - / -小鼠。 (E)的畸胎瘤的组织学和免疫染色证实细胞分化成所有三个胚层(外胚层,中胚层和内胚层)。 αfetoprotein(AFP,内胚层),αsmooth肌动蛋白(αSMA,中胚层)和β3微管蛋白(TUBB3,外胚层)的肿块进行检测。比例尺= 100微米。 (F)和EB中畸胎瘤(TE)的RT-PCR分析。 C +,阳性对照; NTC,无模板控制。 波形蛋白 (VIM,中胚层),αfetoprotein(AFP,内胚层)和β3微管蛋白 (TUBB3,外胚层)。 (PCR面板已从参考38修改)。 请点击此处查看次的放大版本是图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

选择以获得多能性的诱导的方法是相关的细胞的临床安全相对于长期的移植。如今,有适合的重编程的几种方法。间的非整合方法中,仙台病毒(SeV载体)载体是能产生大量的蛋白的未经结合进感染的细胞40的核,可以是获得iPS细胞的策略的RNA病毒。 SeV载体可能是平移级iPS细胞的产生有吸引力的候选者,但它提出了一些缺点。病毒复制酶是转基因序列的性质敏感。由于SeV载体组成复制,它们可能难以从宿主细胞来消除,即使不同的策略被用于改善该方面41,42。它需要特殊处理,如第2级生物安全柜。在那里,我唯一一家商业供应商提供。存在当前缺乏临床级的SeV重编程的和有iPS细胞的生产成本高。

由于这些方面,转座子的系统可以被认为相对于SeV载体更好的方法,在这里我们建立这个系统是为鼠标重新编程的细胞AF各种优点合适的方法。它允许生产违背使用异生状况的当前病毒产生的协议xenofree iPS细胞。它没有明显的种间屏障,具有转基因货运能力比病毒大。它允许通过使用标准细胞转染方法,它可以在装有1级生物安全柜每实验室容易地进行简单,安全地运送质粒转座子。转座再表达允许去除与随之而来的产生自由足迹小鼠和人iPS细胞的PB元件,作为各种CE证明LL线32,34,35。不同的研究表明,转座子系统,可在邻近癌症相关基因,并在相对于基于病毒的载体43,44,45,46,47定位活性基因更少偏压定位显示较低的频率。基于转座子重新编程取决于所选择的传送方法,并且这是一个限制因相关的DNA转染方法(脂质体转染,电穿孔或核转染)的电阻或毒性。在这里,我们用设计DNA转染与该鼠标AF细胞正常工作的非脂质体剂型。如果其他细胞时,测试将需要使用最佳的交付方式在高效率和低毒性方面。简易,该PB座子方法被认为是安全的研发成本低,但与SeV载体相比较低的效率。

关于以获得小鼠AF细胞的方法,它是有怀孕雌性小鼠可用的重要。因此,有必要建立交配足够数目(雌性至少六个,每个雄性雌性二)。

更多的实验能特异性人类AF细胞被执行以从健康和患病的胎儿产生iPS细胞。考虑到广泛妊娠期间从AF获得先天性疾病,可以通过产前诊断来检测,将细胞的代表来推导iPS细胞为最佳来源研究疾病48,也为在组织缺损的情况下,计划一个再生医学的方法如心脏或骨骼肌49,50。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者什么都没有透露。

Materials

Name Company Catalog Number Comments
100 mm Bacterial-grade Petri Dishes  BD Falcon 351029 For in vitro differentiation
2-mercaptoethanol  Sigma M6250 For mouse AF, iPS-AF cells and differentiation medium
Alexa568-conjugated goat anti-mouse IgM  Thermo Fisher Scientific A21043 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-goat IgG  Thermo Fisher Scientific A21468 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-rabbit IgG  Thermo Fisher Scientific A21442 Secondary antibody (immunofluorescence)
Alexa594-conjugated goat anti-mouse IgG  Thermo Fisher Scientific A11005 Secondary antibody (immunofluorescence)
Alkaline Phosphatase kit  Sigma 85L1 Alkaline Phosphatase  staining
Ampicillin Sigma A0166 For bacterial selection
Bovine Serum Albumin  Sigma A7906 BSA, for blocking solution. Diluted in PBS 1x
Chloroform Sigma C2432 For RNA extraction
DH5α cells Thermo Fisher Scientific 18265-017 Bacteria for cloning procedure
Dulbecco's Modified Eagle Medium (DMEM) Thermo Fisher Scientific 41965039 For MEF, mouse AF, iPS-AF cells and differentiation medium
Doxycycline  Sigma D9891 For exogenous factors expression
Microcentrifuge tubes (1.5 ml)  Sarstedt  72.706 For PB production 
ES FBS  Thermo Fisher Scientific 10439024 For mouse AF, iPS-AF cells and differentiation medium
FBS  Thermo Fisher Scientific 10270106 For MEF medium
Fine point forceps F.S.T Dumont #5  AF isolation
Gelatin J.T.Baker 131 Used 0.1%, diluted in PBS 1x
Glycine Bio-Rad 161-0718 For blocking solution. Diluted in PBS 1x
Haematoxylin QS Vector Laboratories H3404 Nuclei detection
HE  Bio-Optica 04-061010 Histological analysis of teratoma
Hoechst  Thermo Fisher Scientific H3570 Nuclei detection
Horse Serum  Thermo Fisher Scientific 16050-122 For blocking solution
HRP-conjugated goat anti-mouse IgG SantaCruz sc2005 Secondary antibody (immunoperoxidase)
ImmPACT NovaRED  Vector Laboratories SK4805 Peroxidase substrate
Insulin syringe with needle (25 G) Terumo SS+01H25161 Amniocentesis procedure
Klf4  SantaCruz sc-20691 Rabbit polyclonal IgG
L-glutamine  Thermo Fisher Scientific 25030 For mouse AF, iPS-AF cells and differentiation medium
LB broth (Lennox) Sigma L3022 For bacterial growth
LIF  Sigma L5158 For mouse AF and iPS-AF cells medium
Matrigel  BD 354234 For in vitro differentiation. Diluted 1:10 in DMEM
Methanol Sigma 32213 Peroxidase blocking
MULTIWELL 24 well plate BD Falcon 353047 For in vitro differentiation
MULTIWELL 6 well plate BD Falcon 353046 For MEF, mouse AF and iPS-AF cells culture
Nanog  ReproCELL RCAB0002P-F Rabbit polyclonal IgG
Non-essential amino acids  Sigma M7145 For mouse AF, iPS-AF cells and differentiation medium
Normal Goat Serum Vector Laboratories S2000 For blocking solution. Diluted in PBS 1x
NP-40 Sigma 12087-87-0 For cell permeabilization. Diluted in PBS 1x
Oct4 SantaCruz sc-5279 Mouse monoclonal IgG2b
Oligo (dT)  Thermo Fisher Scientific 18418012 For RT-PCR
Paraformaldehyde (solution) Sigma 441244 PFA, fixative, diluted in PBS
PBS 10x Thermo Fisher Scientific 14200-067 D-PBS, free of Ca2+/Mg2+. Diluted with sterile water to obtain PBS 1x
Penicillin - Streptomycin  Thermo Fisher Scientific 15070063 For MEF, mouse AF, iPS-AF cells and differentiation medium
Petri Dish (150 mm) BD Falcon 353025 For MEF culture, tissue culture
PiggyBac transposase expression plasmid  Provided by professor Andras Nagy laboratory - mPBase
PiggyBac-tetO2-IRES-OKMS transposon plasmid Provided by professor Andras Nagy laboratory - PB-tetO2-IRES-OKMS
QIAprep Spin Maxiprep Kit Qiagen 12663 For plasmids purification
QIAprep Spin Miniprep Kit Qiagen 27106 For plasmids purification
Reverse tetracycline transactivator transposon plasmid  Provided by professor Andras Nagy laboratory - rtTA
RNeasy Mini Kit  Qiagen 74134 For RNA extraction
Sox2  SantaCruz sc-17320 Goat polyclonal IgG
SSEA1  Abcam ab16285 Mouse monoclonal IgM
SuperScript II Reverse Transcriptase  Thermo Fisher Scientific 18064-014 For RT-PCR
Abcam ab20680 Rabbit polyclonal IgG
Taq DNA Polymerase Thermo Fisher Scientific 10342020 PCR
Trypsin  Thermo Fisher Scientific 25300-054 Cell culture passaging
Triton X-100 Bio-Rad 161-047 For cell permeabilization, diluted in PBS 1x
TRIzol Reagent Thermo Fisher Scientific 15596-026 For RNA extraction
Tubb3   Promega  G712A Mouse monoclonal IgG1
TWEEN-20 Sigma P1379 For cell permeabilization, diluted in PBS 1x
αfp    R&D Systems MAB1368 Mouse Monoclonal IgG1
αSMA  Abcam ab7817 Mouse Monoclonal IgG2a
Transfection Reagent (FuGENE HD) Promega  E2311 For AF cells transfection
Stereomicroscope Nikon SM2645 To perform amniocentesis 
200 μl tips Sarstedt  70.760012 To pick bacteria colonies
Scissor F.S.T 14094-11 stainless 25U To perform amniocentesis 
Ethanol Sigma 2860 To clean the abdominal wall of the pregnant dam
Tissue culture petri dish (150 mm)  BD Falcon 353025 For MEF expansion
Mitomycin C Sigma M4287-2MG For MEF inactivation
MULTIWELL 96 well plate BD Falcon 353071 For iPS-AF culture

DOWNLOAD MATERIALS LIST

References

  1. You, Q., et al. Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. Int J Gynaecol Obstet. 103 (2), 149-152 (2008).
  2. Prusa, A. R., Hengstschlager, M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 8 (11), RA253-RA257 (2002).
  3. Ditadi, A., et al. Human and murine amniotic fluid c-Kit+ Lin- cells display hematopoietic activity. Blood. 113 (17), 3953-3960 (2009).
  4. Piccoli, M., et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 30 (8), 1675-1684 (2012).
  5. Zani, A., et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 63 (2), 300-309 (2014).
  6. Rota, C., et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 21 (11), 1911-1923 (2012).
  7. Mirabella, T., et al. Pro-angiogenic soluble factors from Amniotic Fluid Stem Cells mediate the recruitment of endothelial progenitors in a model of ischemic fasciocutaneous flap. Stem Cells Dev. 21 (12), 2179-2188 (2012).
  8. Mirabella, T., Cili, M., Carlone, S., Cancedda, R., Gentili, C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 32 (15), 3689-3699 (2011).
  9. Yeh, Y. C., et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials. 31 (25), 6444-6453 (2010).
  10. Kim, J. A., et al. MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther. 4 (6), 147 (2013).
  11. Vadasz, S., et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 49 (11), 1554-1563 (2014).
  12. Turner, C. G., et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 46 (1), 57-61 (2011).
  13. Galende, E., et al. Amniotic Fluid Cells Are More Efficiently Reprogrammed to Pluripotency Than Adult Cells. Cloning Stem Cells. 12 (2), 117-125 (2009).
  14. Li, C., et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 18 (22), 4340-4349 (2009).
  15. Ye, L., et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A. 106 (24), 9826-9830 (2009).
  16. Wolfrum, K., et al. The LARGE Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-Derived Human iPS Cells. PLoS ONE. 5 (10), 137-138 (2010).
  17. Ye, L., et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc Natl Acad Sci U S A. 107 (45), 19467-19472 (2010).
  18. Lu, H. E., et al. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp Cell Res. 317 (13), 1895-1903 (2011).
  19. Lu, H. E., et al. Modeling Neurogenesis Impairment in Down Syndrome with Induced Pluripotent Stem Cells from Trisomy 21 Amniotic Fluid Cells. Exp Cell Res. 319 (4), 498-505 (2012).
  20. Kobari, L., et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 97 (12), 1795-1803 (2012).
  21. Li, Q., Fan, Y., Sun, X., Yu, Y. Generation of Induced Pluripotent Stem Cells from Human Amniotic Fluid Cells by Reprogramming with Two Factors in Feeder-free Conditions. J Reprod Dev. 59 (1), 72-77 (2012).
  22. Fan, Y., Luo, Y., Chen, X., Li, Q., Sun, X. Generation of Human β-thalassemia Induced Pluripotent Stem Cells from Amniotic Fluid Cells Using a Single Excisable Lentiviral Stem Cell Cassette. J Reprod Dev. 58 (4), 404-409 (2012).
  23. Liu, T., et al. High efficiency of reprogramming CD34+ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev. 21 (12), 2322-2332 (2012).
  24. Jiang, G., et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 23 (21), 2613-2625 (2014).
  25. Drozd, A. M., et al. Generation of human iPSC from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 6 (122), (2015).
  26. Moschidou, D., et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with Valproic acid acquire pluripotent characteristics. Stem Cells Dev. 22 (3), 444-458 (2012).
  27. Moschidou, D., et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol Ther. 20 (10), 1953-1967 (2012).
  28. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  29. Mikkelsen, T. S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 454 (7200), 49-55 (2008).
  30. Sridharan, R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 136 (2), 364-377 (2009).
  31. Knight, S., Collins, M., Takeuchi, Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther. 13 (3), 211-227 (2013).
  32. Fraser, M. J., Ciszczon, T., Elick, T., Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol. 5 (2), 141-151 (1996).
  33. Woltjen, K., Kim, S. I., Nagy, A. The PiggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods Mol Biol. 1357, 1-22 (2015).
  34. Wu, S. C., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A. 103 (41), 15008-15013 (2006).
  35. Ding, S., et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122 (3), 473-483 (2005).
  36. Wang, W., et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 105 (27), 9290-9295 (2008).
  37. Cadiñanos, J., Bradley, A. Generation of an inducible and optimized PiggyBac transposon system. Nucleic Acids Res. 35 (12), e87 (2007).
  38. Bertin, E., et al. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system. Stem Cell Research. 15 (3), 510-513 (2015).
  39. Woltjen, K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458 (7239), 766-770 (2009).
  40. Fusaki, N., et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 85 (8), 348-362 (2009).
  41. Nishishita, N., et al. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PLoS One. 7 (9), e38389 (2012).
  42. Ono, M., et al. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One. 7 (8), e42855 (2012).
  43. Yant, S. R., et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol. 25 (6), 2085-2094 (2005).
  44. Wilson, M. H., Coates, C. J., George, A. L. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther. 15 (1), 139-145 (2007).
  45. Galvan, D. L., et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother. 32 (8), 837-844 (2009).
  46. Huang, X., et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther. 18 (10), 1803-1813 (2010).
  47. Meir, Y. J., et al. Genome-wide target profiling of PiggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol. 11 (28), (2011).
  48. Moretti, A., et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 363 (15), 1397-1409 (2010).
  49. Filareto, A., et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 4 (1549), (2013).
  50. Darabi, R., et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 10 (5), 610-619 (2012).

Tags

发育生物学,第120,羊水细胞,诱导多能干细胞,转座子piggyBac,再生医学,重新编程,鼠标。
从小鼠羊水细胞多能干细胞使用转座子系统的生产
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Bertin, E., Piccoli, M., Franzin,More

Bertin, E., Piccoli, M., Franzin, C., Nagy, A., Mileikovsky, M., De Coppi, P., Pozzobon, M. The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System. J. Vis. Exp. (120), e54598, doi:10.3791/54598 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter