Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

小口径支架移植物使用静电及球囊扩张裸金属支架的制作

Published: October 26, 2016 doi: 10.3791/54731

Introduction

冠状动脉介入治疗过程会由于斑块和血管壁的破坏显著血管壁损伤。这导致再狭窄,静脉移植物周围栓塞,冠状动脉管腔1-4的不连续性。为了避免这些并发症,一个有希望的战略将是覆盖了血管成形术的网站,这将潜在地抑制再狭窄,从血管腔的不连续性降低风险,防止周围栓塞血管表面。以前的研究已经比较裸金属支架,以支架移植物与支架移植5积极成果。研究人员已经使用了几种材料制造的膜,以覆盖支架。这包括合成的材料,如聚乙烯酯(PET),聚四氟乙烯(PTFE),聚氨酯(PU),以及硅或自体血管组织制造覆膜支架6-9。用于覆盖所述支架的理想移植材料应抗血栓的,非biodegradable,并应与没有过度增殖,炎症10天然组织整合。用于覆盖支架移植物材料还应促进支架移植物的愈合。

支架移植物被广泛用于主动脉缩窄,颈动脉的假性动脉瘤,动静脉瘘的治疗中,退化静脉移植,并大到巨型脑动脉瘤。但小口径支架移植物的发展是通过维持低轮廓和灵活性,这有助于在支架移植物11-14的部署的能力的限制。 PU为具有良好的机械强度,这是实现低轮廓和良好的柔韧性15,16所期望的性状的弹性体聚合物。除了具有良好的产能,支架移植还应促进快速愈合和内皮。 PU覆膜支架移植物表现出更好的生物相容性和增强的内皮17。研究者此前试图endothelialize PU与内皮细胞接种17它们覆盖支架移植物。聚氨酯的静电以创建纳米纤维基质已被证明是一种有价值的技术用于生产血管的移植物18,19。模仿天然细胞外基质的结构的纳米纤维的存在也是已知的,以促进内皮细胞增殖20,21。静电纺丝还允许在材料22的厚度的控制。制成的PU小口径血管移植已经研究了通过使用修饰如表面涂层,抗凝血剂,以及细胞增殖抑制剂,以促进愈合。所有这些修改都旨在调解主机接受和促进愈合的移植物23。

我们小组已经开发出可在动物模型24-26部署的球囊可扩张裸金属支架。电纺聚氨酯网格和球的组合OON扩张支架,使我们能够产生小口径球囊扩张支架移植物。大多数目前可用的支架移植物的经股动脉介入过程期间被引入,但只有少数商业覆膜支架可以引入1法国尺寸比为一个未膨胀的气球27需要更大。在这项研究中,我们通过包封静电聚氨酯的两层可被传递到一个经皮介入过程使用标准的8-9法国导向导管冠状动脉之间的球囊可扩张支架开发了小口径血管支架 - 移植物。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1.聚氨酯静电的心轴收集

  1. 准备为芯棒静电
    1. 熔融约8ml生物相容的,食品级,水溶性载体材料在量筒(约9毫米直径和110毫米深)使用烘箱在155℃。
    2. 蘸直径为3毫米,长100毫米的不锈钢心轴,得到心轴的表面上的支撑材料的涂层。之前浸渍,放置心轴在烘箱中在155℃约15分钟,以提高心轴表面,这有助于在表面与熔融载体材料润湿的温度。
    3. 让浸渍芯棒冷却至约140℃,同时将熔融支撑材料凝固形成所述心轴表面上形成均匀的薄涂层。在冷却过程中,垂直悬挂的心轴,使得重力使过量支撑材料滴落。该涂料可轻松去除心轴成品支架 - 移植物的。
  2. (见图1)的静电系统的心轴收集器的设置
    1. 水平对齐实验室混合器并连接一个塑料杆,这将在通风柜内的相对端保持在不锈钢心轴上。
    2. 通过浸没仅心轴的前端在水中,以适应塑料支承杆在芯棒的端部溶解从心轴的前端的支撑材料。支持塑料支承杆在心轴的自由端,以协助在所述心轴收集器的均匀转动。
    3. 使用在塑料支撑杆固定螺丝来固定不锈钢轴和避免静电过程中滑倒。
    4. 由一个U形的地线附着到不锈钢心轴粉碎芯棒集电极。使用橡胶O形环以保持地线与心轴的两侧。
  3. Setti纳克了静电系统的液体聚氨酯挤出系统
    1. 混合,用25%(M / V)聚氨酯(PU)原液二甲基乙酰胺(DMA),以获得15%(M / V)的PU的DMA溶液( 例如 ,加6毫升的DMA到毫升25 9%的PU溶液)。
      警告!适当的个人防护设备通风橱内工作。
    2. 装满钝端不锈钢针(喷丝板)15%PU液5毫升的玻璃注射器。
    3. 编程注射器泵基于所述注射器的内直径为0.01毫升/分钟挤出。
    4. 安装与上水平与针尖端从心轴收集约20cm注射泵喷丝头注射器。从注射器的导电部分绝缘注射泵用橡胶片,以避免产生电弧。
    5. 高电压发生器连接到使用鳄鱼夹注射器的喷丝头。
  4. 以0.01毫升/分钟和轮状病毒运行注射器泵忒与实验室混合器以速度慢( 例如 ,50rpm下)中运行的心轴。
  5. 应用横跨喷丝头20千伏和集电极心轴的电压差。聚氨酯纳米纤维开始沉积在旋转的芯轴和薄层会在几分钟之内可见。确保通风柜被关闭,排气被关闭以避免纳米纤维的丧失。

2.静电纺丝支架移植物

  1. 上2小时的旋转心轴静电纺丝聚氨酯纳米纤维以产生均匀的管(如在步骤1中说明)。
  2. 从连接到实验室混合器塑料杆移除心轴来安装裸金属支架。取出芯棒,以保证残留溶剂烟雾被删除之前,打开通风柜和开放排气。
  3. 球囊可扩张不锈钢支架26上的静电管滑动到希望的位置。它可能需要稍微膨胀所述支架使其SLIPS上而不损坏静电管。
  4. 卷曲的支架,以确保将支架紧紧地设置在管材料上的心轴,而不是足够松滑动。这也将有助于防止内层和外层的分层。
  5. 再次装入管和支架芯轴上的实验室混合器的塑料杆为静电的支架移植物的外层。
  6. 如步骤1中说明的3小时静电纺丝纳米纤维来制造支架移植物的外层。
  7. 后静电外之后,沿圆周切断的PU材料从用手术刀在支架的端部大约为1毫米。
  8. 泡与支架移植物的心轴在去离子水中,以从其中将来自心轴释放支架移植物的心轴溶解支撑材料。根据需要,以完全溶解载体材料用新鲜水替换。
  9. 一旦支撑材料被溶解,轻轻取出从T支架移植他芯棒并晾干。考虑允许空气干燥之前浸泡在去离子水,以溶解任何残留的支撑材料去除的支架移植物。

3.人造支架移植物的测试

  1. 上滑动3毫米三折气球的支架移植物。
  2. 压接支架移植使用上举行接工具手气球。
  3. 检查使用均匀卷边和类似的覆盖材料的剥离或穿刺失败的由于支架变形任何其他标志显微镜卷曲支架 - 移植物。
  4. 通过与充气装置和水加压三折球囊展开支架移植物,以3毫米的设计直径。再次,检查扩张的支架移植物的均匀膨胀和衰竭的迹象。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

我们electrospinner设置( 图1)导致了高品质的聚氨酯纳米纤维( 图2)。的支架-移植物是通过电的聚氨酯的内层到心轴,在该层之上滑动裸金属支架,和静电聚氨酯第二外层( 图3)制造的。聚氨酯纳米纤维以50微米/小时的速率,这导致在100μm的内层和150微米的支架移植物的外层电纺丝。用这里介绍的协议静电导致均匀的纳米纤维的聚氨酯的层( 图4)。压接和将所得小口径支架移植物的扩张表明,这些设备能够使用标准的三折气球未经卷曲不均也不材料失效( 图5)的迹象正在部署的。

URE 1“SRC =”/文件/ ftp_upload / 54731 / 54731fig1.jpg“/>
图1.原理静电过程。从喷丝头产生的纳米纤维被收集在旋转的芯轴。 请点击此处查看该图的放大版本。

图2
图2.扫描电子显微镜(SEM)聚氨酯纳米纤维的图像。聚氨酯纳米纤维材料的SEM照片显示任意取向是:(a)5000倍放大倍率和纳米纤维(B)1万倍的放大倍率。 请点击此处查看该图的放大版本。

igure 3“SRC =”/文件/ ftp_upload / 54731 / 54731fig3.jpg“/>
图3的步骤在制造支架移植物。支架-移植物(a)的电纺丝内层,(B)加载的静电层上球囊可扩张支架,( )支架移植物的静电外层,( )支架移植物切成一定长度上芯棒,以及(e)支架移植物上的PU纳米纤维层的内层和外层。上规模各部门代表为0.5mm。 请点击此处查看该图的放大版本。

图4
图静电聚氨酯层上的不锈钢心轴4显微图像(a)心轴没有纳米纤维层,( 2小时静电纺丝,和5小时静电的后心轴(C)的纳米纤维的聚氨酯层的后上芯棒>)纳米纤维的聚氨酯层。聚氨酯层的检验示出了沿在静电纺丝的不同时间芯棒均匀的厚度。上规模各部门代表为0.5mm。 请点击此处查看该图的放大版本。

图5
图5.支架移植物用于压接和膨胀测试(a)支架移植物卷曲到3毫米三折气球,( )支架移植物扩大到设计的直径,以及(c)支架移植物卷曲和扩展。上规模各部门代表为0.5mm。g5large.jpg“目标=”_空白“>点击此处查看该图的放大版本。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者宣称,他们没有竞争的经济利益。

Materials

Name Company Catalog Number Comments
Glass syringe Air Tite 7.140-33 Syringe for spinneret
Graduated cylinder 5 ml Fisher Scientific 08-552-4G 5 ml pyrex graduated cylinder about 9 mm diameter and 11 cm long
High voltage generator Bertan Accociates, Inc. 205A-30P Used to apply voltage difference across spinneret and collector
Laboratory mixer with rpm control Scilogex SCI-84010201 Available from various laboratory equipment suppliers
Polyurethane DSM BioSpan SPU Biospan Segmented Polyurethane
Rubber sheet McMaster Carr 1370N11 Used to insulate syringe during electrospinning
Stainless steel mandrel N/A N/A Manufactured 
Stainless steel needle Hamilton 91018 Used as spinneret in electrospinning
Support material EnvisionTec B04-HT-DEMOMAT Biocompatible water soluble material
Syringe Pump Harvard Apparatus 55-3333

DOWNLOAD MATERIALS LIST

References

  1. Elsner, M., et al. Coronary stent grafts covered by a polytetrafluoroethylene membrane. Am. J. Cardiol. 84 (3), 335-338 (1999).
  2. Störger, H., Haase, J. Polytetrafluoroethylene-Covered Stents: Indications, Advantages, and Limitations. J. Interv. Cardiol. 12 (6), 451-456 (1999).
  3. Moreno, P. R., et al. Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. Circulation. 94 (12), 3098-3102 (1996).
  4. Briguori, C., Sarais, C., Colombo, A. The polytetrafluoroethylene-covered stent: a device with multiple potential advantages. Int. J. Cardiovasc. Interv. 4 (3), 145-149 (2001).
  5. Qureshi, M. A., Martin, Z., Greenberg, R. K. Endovascular management of patients with Takayasu arteritis: stents versus stent grafts. Semin. Vasc. Surg. 24 (1), 44-52 (2011).
  6. Ahmadi, R., Schillinger, M., Maca, T., Minar, E. Femoropopliteal arteries: immediate and long-term results with a Dacron-covered stent-graft. Radiology. 223 (2), 345-350 (2002).
  7. Geremia, G., et al. Experimental arteriovenous fistulas: treatment with silicone-covered metallic stents. AJNR. Am. J. Neuroradiol. 18 (2), 271-277 (1997).
  8. Saatci, I., et al. Treatment of internal carotid artery aneurysms with a covered stent: experience in 24 patients with mid-term follow-up results. AJNR. Am. J. Neuroradiol. 25 (10), 1742-1749 (2004).
  9. Stefanadis, C., et al. Stents Wrapped in Autologous Vein: An Experimental Study1. J. Am. Coll. Cardiol. 28 (4), 1039-1046 (1996).
  10. Palmaz, J. C. Review of polymeric graft materials for endovascular applications. J. Vasc. Interv. Radiol. 9, 7-13 (1998).
  11. Bruckheimer, E., Dagan, T., Amir, G., Birk, E. Covered Cheatham-Platinum stents for serial dilation of severe native aortic coarctation. Catheter Cardiovasc. Interv. 74 (1), 117-123 (2009).
  12. Tzifa, A., et al. Covered Cheatham-platinum stents for aortic coarctation: early and intermediate-term results. J. Am. Coll. Cardiol. 47 (7), 1457-1463 (2006).
  13. Kuraishi, K., et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J. Biomed. Mater. Res. Part B Appl. Biomater. 88 (1), 230-239 (2009).
  14. Pant, S., Bressloff, N. W., Limbert, G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechanobiol. 11 (1-2), 61-82 (2012).
  15. Muller-Hulsbeck, S., et al. Experience on endothelial cell adhesion on vascular stents and stent-grafts: first in vitro results. Invest. Radiol. 37 (6), 314-320 (2002).
  16. Sarkar, S., Salacinski, H. J., Hamilton, G., Seifalian, A. M. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31 (6), 627-636 (2006).
  17. Shirota, T., Yasui, H., Shimokawa, H., Matsuda, T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 24 (13), 2295-2302 (2003).
  18. Grasl, C., et al. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res. A. 93 (2), 716-723 (2010).
  19. Kidoaki, S., Kwon, I. K., Matsuda, T. Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. Part B Appl. Biomater. 76 (1), 219-229 (2006).
  20. Stegemann, J. P., Kaszuba, S. N., Rowe, S. L. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13 (11), 2601-2613 (2007).
  21. Sankaran, K. K., Subramanian, A., Krishnan, U. M., Sethuraman, S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol. J. 10 (1), 96-108 (2015).
  22. Gibson, P., Schreuder-Gibson, H., Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf., A. 187, 469-481 (2001).
  23. Zdrahala, R. J. Small caliber vascular grafts. Part II: Polyurethanes revisited. J. Biomater. Appl. 11 (1), 37-61 (1996).
  24. Uthamaraj, S., et al. Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells. Ann. Biomed. Eng. 42 (12), 2416-2424 (2014).
  25. Tefft, B. J., et al. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles. J. Vis. Exp. (105), e53099 (2015).
  26. Uthamaraj, S., et al. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention. J. Vis. Exp. (103), e53100 (2015).
  27. de Giovanni, J. V. Covered stents in the treatment of aortic coarctation. J. Interv. Cardiol. 14 (2), 187-190 (2001).
  28. Hans, F. J., et al. Treatment of wide-necked aneurysms with balloon-expandable polyurethane-covered stentgrafts: experience in an animal model. Acta. Neurochir. (Wien). 147 (8), 871-876 (2005).
  29. Hasan, A., et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta. Biomater. 10 (1), 11-25 (2014).

Tags

医药,116期,愈合,内皮,聚氨酯,纳米纤维,支架,细胞外基质,动脉瘤,覆膜支架,主动脉瘤,生物医学工程
小口径支架移植物使用静电及球囊扩张裸金属支架的制作
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Uthamaraj, S., Tefft, B. J., Jana,More

Uthamaraj, S., Tefft, B. J., Jana, S., Hlinomaz, O., Kalra, M., Lerman, A., Dragomir-Daescu, D., Sandhu, G. S. Fabrication of Small Caliber Stent-grafts Using Electrospinning and Balloon Expandable Bare Metal Stents. J. Vis. Exp. (116), e54731, doi:10.3791/54731 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter