Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

Метод визуализации и анализа Мембранные белков, взаимодействующих с помощью просвечивающей электронной микроскопии

Published: March 5, 2017 doi: 10.3791/55148

Materials

Name Company Catalog Number Comments
Transmission electron microscope: JEOL2100F JEOL
CCD camera Tiez Video and Imaging Processing System GmbH, Germany
Glow discharger Baltec
TEM grid: 400 mesh TAAB GM016/C
Size exclusion chromatography: Agilent SEC-5 Agilent Technologies 5190-2526
Superdex 200 HR 10/300 GE Healthcare Life Sciences 17-5172-01
Plasmid: MSP1E3D1 Addgene 20066
Bacteria: BL21DE3 NEB C2527H
Bacteria: BL21 (DE3) T1R pRARE2 Protein Science Facility, KI, Solna
Purification Matrix: ATP agarose Sigma Aldrich A2767
Purification Matrix: HisTrap HP-5 mL GE Healthcare Life Sciences 17-5247-01
Lipid: POPC Avanti polar lipids 850457C 25 mg/mL in chloroform
Hydrophobic beads: Bio-Beads, SM-2 Resin Bio-Rad 1523920
13 mm syringe filter: 0.2 μm Pall life sciences PN 4554T
Stain: Sodium phosphotungstate tribasic hydrate Sigma Aldrich 31648
2-mercaptoethanol Sigma Aldrich M3148-250ML
Sodium Dodecyl Sulfate (SDS) Bio-Rad 161-0301
Protease inhibitor cocktail Sigma Aldrich 4693132001
TCEP Sigma Aldrich 646547
Detergent: Sodium cholate hydrate Sigma Aldrich C6445-10G
Sodium Cholate 500 mM Sodium cholate. Resuspend in miliQ water and store at -20 °C.
Lipid Stock 50 mM POPC, 100 mM sodium cholate, 20 mM Tris-HCl pH 7.5, 100 mM NaCl. Store at 4 °C for a week; or
Store -80 °C for a month, after purging the solution with nitrogen.
MSP standard buffer 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 0.5 mM EDTA.
Store at 4 °C.
Non-Denaturaing Electrophoresis Anode Buffer Thermo Fisher Scientific BN2001 50 mM Bis-Tris, 50 mM Tricine, pH 6.8
Non-Denaturaing Electrophoresis Cathode Buffer Thermo Fisher Scientific BN2002 50 mM Bis-Tris, 50 mM Tricine, pH 6.8, 0.002% Coomassie G-250
Non-Denaturaing Electrophoresis 4x Sample loading Buffer Thermo Fisher Scientific BN2003 50 mM Bis-Tris, pH 7.2, 6 N HCl, 50 mM NaCl, 10% (w/v) glycerol, 0.001% Ponceau S
Denaturaing Electrophoresis Running Buffer In-house recipe: 25 mM Tris-HCl, pH 6.8, 200 mM Glycine, 0.1% (w/v) SDS
Denaturaing Electrophoresis 5x Sample loading Buffer In-house recipe: 0.05% (w/v) Bromophenolblue, 0.2 M Tris-HCl, pH 6.8, 20% (v/v) glycerol, 10% (w/v) SDS, 10 mM 2-mercaptoethanol
Terrific broth Tryptone - 12.0 g, Yeast Extract - 24.0 g, 100 mL 0.17 M KH2PO4 and 0.72 M K2HPO4, Glycerol - 4 mL.
Tryptone, yeast extract and glycerol were prepared to 900 mL and autoclaved seperately. KH2PO4 and K2HPO4 were prepared and autoclaved separately. Both were mixed before using the medium.

DOWNLOAD MATERIALS LIST

References

  1. Kleinschmidt, J. H., Popot, J. L. Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys. 564, 327-343 (2014).
  2. Frauenfeld, J., et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods. 13 (4), 345-351 (2016).
  3. Denisov, I. G., Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol. 23 (6), 481-486 (2016).
  4. Bayburt, T. H., Grinkova, Y. V., Sligar, S. G. Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano Letters. 2 (8), 853-856 (2002).
  5. Jonas, A., Steinmetz, A., Churgay, L. The number of amphipathic alpha-helical segments of apolipoproteins A-I, E, and A-IV determines the size and functional properties of their reconstituted lipoprotein particles. J Biol Chem. 268 (3), 1596-1602 (1993).
  6. Grinkova, Y. V., Denisov, I. G., Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel. 23 (11), 843-848 (2010).
  7. Hagn, F., Etzkorn, M., Raschle, T., Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc. 135 (5), 1919-1925 (2013).
  8. Ritchie, T. K., et al. Methods in Enzymology. Duzgunes, N. ejat 464, Academic Press. 211-231 (2009).
  9. Schuler, M. A., Denisov, I. G., Sligar, S. G. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol Biol. 974, 415-433 (2013).
  10. Nasr, M. L., et al. Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire. Protein Sci. 22 (6), 774-787 (2013).
  11. Yokogawa, M., et al. NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J Biol Chem. 287 (42), 34936-34945 (2012).
  12. Wan, C., et al. Insights into the molecular recognition of the granuphilin C2A domain with PI(4,5)P2. Chem Phys Lipids. 186, 61-67 (2015).
  13. Zhang, P., et al. An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. Structure. 23 (9), 1563-1572 (2015).
  14. Grushin, K., Miller, J., Dalm, D., Stoilova-McPhie, S. Factor VIII organisation on nanodiscs with different lipid composition. Thromb Haemost. 113 (4), 741-749 (2015).
  15. Baylon, J. L., Lenov, I. L., Sligar, S. G., Tajkhorshid, E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc. 135 (23), 8542-8551 (2013).
  16. Mazhab-Jafari, M. T., et al. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A. 112 (21), 6625-6630 (2015).
  17. Mazhab-Jafari, M. T., et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc. 135 (9), 3367-3370 (2013).
  18. Wang, L., Sigworth, F. J. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature. 461 (7261), 292-295 (2009).
  19. Ackerson, C. J., Powell, R. D., Hainfeld, J. F. Site-specific biomolecule labeling with gold clusters. Methods Enzymol. 481, 195-230 (2010).
  20. Boldog, T., Grimme, S., Li, M., Sligar, S. G., Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A. 103 (31), 11509-11514 (2006).
  21. Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S., Stewart, P. D. Membrane protein structure determination - the next generation. Biochim Biophys Acta. 1838 (1 Pt A), 78-87 (2014).
  22. Dias, D. M., Ciulli, A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol. 116 (2-3), 101-112 (2014).
  23. Viegas, A., Viennet, T., Etzkorn, M. The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem. , (2016).
  24. Cheng, Y., Grigorieff, N., Penczek, P. A., Walz, T. A primer to single-particle cryo-electron microscopy. Cell. 161 (3), 438-449 (2015).
  25. Wu, S., Armache, J. P., Cheng, Y. Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy (Oxf). 65 (1), 35-41 (2016).
  26. Li, X., et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 10 (6), 584-590 (2013).
  27. De Carlo, S., Adrian, M., Kalin, P., Mayer, J. M., Dubochet, J. Unexpected property of trehalose as observed by cryo-electron microscopy. J Microsc. 196 (1), 40-45 (1999).
  28. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat Methods. 13 (1), 24-27 (2016).
  29. Ohi, M., Li, Y., Cheng, Y., Walz, T. Negative Staining and Image Classification Powerful Tools in Modern Electron Microscopy. Biol Proced Online. 6, 23-34 (2004).
  30. Forte, T. M., Nordhausen, R. W. Electron microscopy of negatively stained lipoproteins. Methods Enzymol. 128, 442-457 (1986).
  31. Zhao, F. Q., Craig, R. Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol. 141 (1), 43-52 (2003).
  32. Zhang, L., et al. Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J Lipid Res. 52 (1), 175-184 (2011).
  33. Zhang, L., et al. An optimized negative-staining protocol of electron microscopy for apoE4 POPC lipoprotein. J Lipid Res. 51 (5), 1228-1236 (2010).
  34. Matz, C. E., Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem. 257 (8), 4535-4540 (1982).
  35. Kumar, R. B., et al. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs. PLoS One. 11 (3), e0152116 (2016).
  36. Waggoner, T. A., Last, J. A., Kotula, P. G., Sasaki, D. Y. Self-assembled columns of stacked lipid bilayers mediated by metal ion recognition. J Am Chem Soc. 123 (3), 496-497 (2001).
  37. Kovacs, E., et al. Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor. Mol Cell Biol. 35 (17), 3083-3102 (2015).
  38. Rames, M., Yu, Y., Ren, G. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy. J Vis Exp. (90), e51087 (2014).
  39. Zhang, L., Tong, H., Garewal, M., Ren, G. Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta. 1830 (1), 2150-2159 (2013).
  40. Cong, Y., Ludtke, S. J. Single particle analysis at high resolution. Methods Enzymol. 482, 211-235 (2010).
  41. Radmark, O., Werz, O., Steinhilber, D., Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 1851 (4), 331-339 (2015).
  42. Anwar, Y., Sabir, J. S., Qureshi, M. I., Saini, K. S. 5-lipoxygenase: a promising drug target against inflammatory diseases-biochemical and pharmacological regulation. Curr Drug Targets. 15 (4), 410-422 (2014).
  43. Radmark, O., Samuelsson, B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem Biophys Res Commun. 396 (1), 105-110 (2010).
  44. Noguchi, M., Miyano, M., Matsumoto, T., Noma, M. Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA4 synthetase activity. Biochim Biophys Acta. 1215 (3), 300-306 (1994).
  45. Pande, A. H., Qin, S., Tatulian, S. A. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J. 88 (6), 4084-4094 (2005).
  46. Pande, A. H., et al. Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry. 43 (46), 14653-14666 (2004).
  47. Wong, A., Hwang, S. M., Cook, M. N., Hogaboom, G. K., Crooke, S. T. Interactions of 5-lipoxygenase with membranes: studies on the association of soluble enzyme with membranes and alterations in enzyme activity. Biochemistry. 27 (18), 6763-6769 (1988).
  48. Rigaud, J. L., Levy, D., Mosser, G., Lambert, O. Detergent removal by non-polar polystyrene beads. European Biophysics Journal. 27 (4), 305-319 (1998).
  49. Wittig, I., Braun, H. P., Schagger, H. Blue native PAGE. Nat Protoc. 1 (1), 418-428 (2006).
  50. Rames, M., Yu, Y., Ren, G. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J Vis Exp. (90), e51087 (2014).
  51. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A., Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc. 126 (11), 3477-3487 (2004).
  52. Hornschemeyer, P., Liss, V., Heermann, R., Jung, K., Hunke, S. Interaction Analysis of a Two-Component System Using Nanodiscs. PLoS One. 11 (2), 0149187 (2016).
  53. Degrip, W. J., Vanoostrum, J., Bovee-Geurts, P. H. Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes. Biochem J. 330 (Pt 2), 667-674 (1998).
  54. Martin, D. D., Budamagunta, M. S., Ryan, R. O., Voss, J. C., Oda, M. N. Apolipoprotein A-I assumes a "looped belt" conformation on reconstituted high density lipoprotein. J Biol Chem. 281 (29), 20418-20426 (2006).
  55. Cerione, R. A., Ross, E. M. Reconstitution of receptors and G proteins in phospholipid vesicles. Methods Enzymol. 195, 329-342 (1991).
  56. Shaw, A. W., McLean, M. A., Sligar, S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett. 556 (1-3), 260-264 (2004).
  57. Meer, G., Voelker, D. R., Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 9 (2), 112-124 (2008).
  58. Civjan, N. R., Bayburt, T. H., Schuler, M. A., Sligar, S. G. Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques. 35 (3), 553-562 (2003).
  59. Bao, H., Duong, F., Chan, C. S. A step-by-step method for the reconstitution of an ABC transporter into nanodisc lipid particles. J Vis Exp. (66), e3910 (2012).
  60. Brooks, S. P., Storey, K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 201 (1), 119-126 (1992).
  61. Gilbert, N. C., et al. The structure of human 5-lipoxygenase. Science. 331 (6014), 217-219 (2011).
  62. Radmark, O. 5-lipoxygenase-derived leukotrienes: mediators also of atherosclerotic inflammation. Arterioscler Thromb Vasc Biol. 23 (7), 1140-1142 (2003).
  63. Gao, Y., Cao, E., Julius, D., Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 534 (7607), 347-351 (2016).
  64. Bayburt, T. H., Sligar, S. G. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12 (11), 2476-2481 (2003).
Метод визуализации и анализа Мембранные белков, взаимодействующих с помощью просвечивающей электронной микроскопии
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

B. Kumar, R., Zhu, L., Hebert, H.,More

B. Kumar, R., Zhu, L., Hebert, H., Jegerschöld, C. Method to Visualize and Analyze Membrane Interacting Proteins by Transmission Electron Microscopy. J. Vis. Exp. (121), e55148, doi:10.3791/55148 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter