Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Genetics

DNA含有量測定法による哺乳類の複製タイミングのゲノムワイドな決意

Published: January 19, 2017 doi: 10.3791/55157

Abstract

ゲノムの複製は、DNA複製の忠実度を保証する高度に調節されたプロセスにおける細胞周期のS期の間に起こります。それぞれのゲノム領域は、複製の複数の起源の同時活性化を介して、S期の間に明確な時に複製されます。レプリケーション(ToRの)の時間は、多くのゲノムおよびエピジェネティックな機能と相関し、突然変異率やがんにリンクされています。健康と病気で、複製プログラムの完全なゲノムビューを理解することは、主要な将来の目標や課題です。

、哺乳動物細胞のゲノムワイドのToRをマップするための簡単な方法:この記事では詳細に(CNR-のToRここでいう)メソッド」レプリケーションのゲノム時間をマッピングするためのS / G1のコピー数の比率」を説明しています。この方法は、S期細胞及びG1期の細胞の間のコピー数の差異に基づいています。 CNR-のToR法は6工程で行われる:ヨウ化プロピジウム(PI)で細胞を染色の調製。 2.ソル(FACS)を蛍光活性化細胞選別を用いた定G1及びS期細胞。 3. DNA精製。 4.超音波処理; 5.ライブラリの準備および配列決定;そして6.バイオインフォマティクス解析。 CNR-のToR方法は、詳細なレプリケーション・マップになり、迅速かつ簡単なアプローチです。

Introduction

哺乳動物のDNA複製は、細胞周期の間に正確に一度、各染色体の正確な複製を確保するために厳密に調節されています。レプリケーションは、高度に制御順序に従って発生-他のゲノム領域は、中間または後期S期(中期および後期複製ドメイン)で、後に複製する一方、複数の大規模なゲノム領域(〜Mbが)、S期(早期複製ドメイン)の先頭に複製する1。ゲノムの50%、また、癌の形質転換5中分化3,4の間及びより少ない程度に、組織2との間ののToRを変更-ゲノムのほとんど30%が、全ての組織(構成のToRドメイン)で同時に複製します。また、特定のゲノム領域は非同期6、7、8、すなわち差が複製します2対立遺伝子間のToRインチ

Torは転写レベル、GC含量、クロマチン状態、遺伝子密度など 1,9を含む多くのゲノムおよびエピ機能と相関します。 ToRのも突然変異率とタイプ10、11、したがって、当然に関連付けられている、複製プログラムの摂動は、がん12、13にリンクされています。 ToRとクロマチン構造の間の因果関係は未だ解明されていません。開いたクロマチンが早い複製を容易にすることが可能です。しかし、代替モデルは14、クロマチンは、初期および後期複製領域1のパッケージングを差動にS期リードの開始時と終了時に複製し、異なるクロマチン制御因子存在の間に組み立てられていることを示唆しています11に発生する突然変異のタイプに影響を与えることによって、GC含量を整形することが示されています。

蛍光in situハイブリダイゼーション(FISH)は、個々の遺伝子座でのToRを測定するための主要な方法です。これは、単一のFISHシグナル与えられた対立遺伝子15、16二重の割合を示すS期の細胞の割合をカウントすることによって簡単に行われます。別の方法は、Sに沿って複数の時点にそれらのDNA含有量に応じて細胞を選別、BrdUでDNAを標識のBrdUを含むDNAを免疫沈降し、定量PCR 17で沈殿したDNAの存在量をチェックするパルスで構成されています。

ゲノムのToRマッピングは、2つの方法によって達成することができます。第一の方法は、上述したBrdU-IPに基づく方法のゲノムのバージョンであり、ここで量の定量各分画中の沈殿したDNAは、マイクロアレイへのハイブリダイゼーションを介して、全ゲノムまたはディープシークエンシングにより同時に行われます。第二の方法、CNR-Torは、G1細胞におけるDNA含有量によってS期細胞と正規化の各ゲノム領域のコピー数を測定することに基づいています。この方法では、細胞は非複製(G1期)および(S期)基( 図1)の複製にFACSによってソートされます。 G1の細胞はすべてのゲノム領域において同じコピー数を持っているので、それらのDNA含有量は同じである必要があります。一方、SにおけるDNAコピー数が遅く複製領域は、したがって、それらのDNA含量がするほとんどの細胞ではまだ複製していない一方で、初期の複製領域は、ほとんどの細胞で複製を受け、したがって、それらのDNA含有量が倍になるので、のToRに依存しますG1細胞のものと同様です。したがって、DNA含量のG1比Sは、のToRを示します。各ゲノム領域のためのDNAの量は、ハイブリダイゼーションによってのいずれかで測定されますマイクロアレイまたはディープシークエンシング2、8による。 CNR-のToRの方法の利点をさらに説明します。

図2で説明したように本論文では、ゲノムのToRマッピング用のCNR-のToR方法について説明します。紙は、結果の基本的な分析およびゲノムのToRマップの作成まで、細胞を採取からプロセス全体の細部を説明します。この論文に記載されているプロトコルが正常に培養で増殖させた種々の細胞型上で実行されています。このプロトコルの将来の改善は、in vivoでのToRのマッピングに、希少細胞タイプにつながることができます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

注:Torは唯一の成長、同期されていない細胞で測定することができます。通常、S期にある〜1×10 5細胞になり、2×10 6急成長する細胞、(律速段階) -手順は、少なくとも1で開始する必要があります。 2または3つの複製を使用して、各実験を実施することをお勧めします。 CNR-のToRの全体のプロセスは、1週間以内に完了することができます - 2日には、ライブラリの準備までのすべての段階に専念する必要があり、1〜2日を配列決定し、さらに1日に必要とされる初期データを解析するために必要です。

文化からの細胞の1コレクション

注:プロトコルは、(約2を含む- 5×10 6細胞)を10cmプレートでの培養中で増殖する細胞のために書かれているが、簡単に他のプラットフォームに調整することができます。

  1. 懸濁液中で増殖させた細胞については、固定(セクション2)に進みます。
  2. 接着細胞の場合、吸引およびPLを洗いますCa 2+およびMg 2+なしで3 mLのPBSで食べました。
  3. PBSを捨て、細胞が剥がれるまで1 mLの商業トリプシン-EDTAを用いて37℃で5分間、細胞をインキュベートします。
    注:トリプシン処理の持続時間は、各細胞型に調整されるべきです。
  4. トリプシンを中和し、15 mLのコニカルチューブまたは5mLのポリスチレンチューブ中の細胞を収集するために3 mLの培地を加えます。氷の上に保管してください。

2.固定

注:この部分については、すべての手順は4℃で行われるべきです。

  1. 4℃で5分間、300×gで細胞を遠心。
  2. 1 mLの冷PBSで細胞を2回吸引し、洗います。
  3. 250μL(合計)冷PBSで細胞を再懸濁し。
  4. チューブを穏やかにボルテックスしながら、ゆっくりと-20℃の100%エタノールを滴下800μLを追加します。 80% - これは、70の最終エタノール濃度をもたらします。
    注:高純度のエタノールをこの段階で推奨されています。
  5. foを氷上で細胞をインキュベートR 30分間。
    注:この段階で細胞を4℃で数日間、-20℃で数ヶ月間保つことができます。

3. PI染色

  1. 4℃で10分間、500×gで細胞を遠心。
  2. 注意深く上清を吸引し、1mLの冷PBSで細胞を2回洗浄します。
  3. 以下の混合物で吸引し、再懸濁し、各サンプル:1 mLのPBS、5μLを10mg / mL RNaseAを、50μLの1mg / mLのヨウ化プロピジウム(PI;使用前にボトルを混ぜます)。 〜2×10 6細胞/ mL)までの濃度を調整します。
    注:光のうちキープ - PIは、光に敏感です。
  4. 5 mLのポリスチレンチューブに35μmのメッシュでろ過し、パラフィルムであります。
  5. 30分 - 15のために、暗所で室温でインキュベートします。
    注:細胞は、今、FACS分析のために準備ができています。必要であれば、染色された細胞を、暗所で4℃で少なくとも24時間保存することができます。

4.ソート

  1. FACS機を用いてソート細胞。米国そのPI強度に基づいて細胞を区別するために561 nmのレーザーを電子。 488ナノメートルまたは532のような535 nmの励起極大付近の他のレーザは、FACS機械構成に応じて使用することができます。
  2. 最適な結果を得るためには、特定のセルサイズに推奨最小のノズル(ほとんどの細胞のための85μm)を使用します。収量を超える純度のモードに優先順位を付けます。 45 PSIのシース圧で、通常300〜500イベント/秒まで、安定した遅い流れを使用してください。
  3. ゲーティングを使用して、SSC FCSをプロットすることにより、死細胞と細胞内残骸(低FCSおよび高SSC)を判別します。生存細胞から(ダブレットが同じH-値を持つことになりますSSC-幅(W)SSC-高さ(H)は、PI-H FSC-W FSC-HプロットによっておよびPI-Wに続いて対をプロットすることによりダブレットを区別しかし、大きなW値)。実行可能な単一細胞では、細胞のDNA含有量を表すPI-エリア(A)強度のヒストグラムを描きます。
  4. 図1に示すように、G1およびS相へソート細胞、。 G1・ゲーティングは限りSから可能な限り狭くするべきでありながら、Sのためのゲーティングは、広いことと、G1とG2期に侵入する必要があります。

図1
PI強度に基づいて、図1細胞周期の決意。マウス胚線維芽細胞(MEF)集団(PI-面積によって測定される)細胞のDNA含量の分布を示すヒストグラム。マークされた領域を使用して、4N DNA含量) - DNA量は、2つのサブ集団I)G1細胞(2NのDNA含量)及びii)S期細胞(2Nに集団をソートするために使用されます。 この図の拡大版をご覧になるにはこちらをクリックしてください。

注:G1細胞の収集の目的は、異なるゲノム領域間のシーケンシング効率のバイアスを考慮するためです。代替アプリローチは、同じ細胞型からG1停止細胞を使用することです。このアプローチは、クリーンな結果を与える(これはS期の汚染を最小限に抑えるため)が、停止した細胞と測定された細胞との間の遺伝的差異に起因するバイアスを導入することができます。

  1. 寒い条件でソートし、1.5 / 2 mLチューブにソートされた細胞を回収します。ソート以下のチューブを氷上に保管してください。
    注:4°C 18で3時間- 1 - 5%BSA DNAの回収率を向上させるためには、低結合チューブを使用すること、または4で被覆された管を使用した方がよいです。

5. DNA精製

  1. 各サンプル(G1およびS)のためのDNA精製キットを用いてDNAを精製します。
    注:市販のキットを使用する場合は、製造業者によって推奨されるように、高収率のために2 mLのチューブに400μLの溶出緩衝液で溶出します。
  2. 蛍光光度計を用いてDNA濃度を確認してください。
    注:FACSによって収集10万、哺乳動物細胞から、1はDNAの〜1μgのを取得する必要があります。 ATは、この段階のDNAを、4℃で、または長期保存のために-20℃で数日間保存することができます。

6.超音波処理

  1. 使用される磁気スタンドと互換性のある1.7 mLチューブにDNAを移します。
  2. 磁気スタンドを用いて、製造業者の指示に従って2×SPRIビーズを用いてDNAを濃縮し、そして50μLの溶出緩衝液で溶出します。
  3. 250塩基対の平均目標ピークの大きさに集束超音波装置とせん断DNA。 50 W、20%のデューティ・ファクタ、バーストあたり200サイクル、20℃、120秒:50μLのDNAサンプルを次のように設定します。
  4. 電気泳動により剪断されたDNAのサイズを確認してください。 〜250bpのピークと700 bpの - 推奨サイズ分布は200です。
    注:この段階ではDNAは4℃で、または長期保管のために-20℃で数日間保存することができます。

7.図書館準備、および配列決定

注:多くのライブラリ作成キットと異なり耳鼻咽喉科シーケンシングプラットフォームは、私たちと材料の項で述べたことにより、使用されているものと同様に動作するはずです。実際に、過去に、ToRのマップは、マイクロアレイプラットフォーム2と非常に類似した方法を用いて作製しました。

  1. すべての市販のライブラリー調製キットを使用してライブラリを準備します。
  2. 800 bpの - ライブラリの準備の終わりには、300のために磁気ビーズを使用してサイズを選択します。
  3. ライブラリーを調製した後、蛍光光度計を用いてDNA濃度を測定。
  4. 電気泳動を用いたDNAのサイズを測定します。
  5. 任意のプラットフォームでシーケンシングを実行します。
    注:シーケンシング、少なくとも10 Mはサンプル毎に読み込みが推奨されます。この深さは読んごとに約300塩基対(3〜のためのGbサイズのゲノム)に相当し、50の分解能でのToRの測定のために十分である - 100キロバイト深さを大きくすると、ウィンドウのサイズの減少につながるため、より確実に高解像度化が可能になります。ペアエンド配列決定は、中に必要はありません唯一のカバレッジ情報が収集されているので、このプロトコル。しかしながら、反復配列を含有する読み取りの位置を解決するのに役立つことができます。

8.分析

注:データ分析A.コレンによって使用される方法に基づいています 19。

  1. bowtie2または任意の信頼性の高い、短いリード・アライナを使用して、対応するゲノムにマップする配列データ。様々なサイズを定義し、同じカバレッジ染色体窓200で覆われたセグメントは、G1画分を読み込むようにし、S期は、同じウィンドウに読み込む数えます。
  2. ウィンドウごとにS / G1比を計算します。これは、ゲノム( 図3)に沿ってS / G1比の大きな変動を持つマップを生成する必要があります。 ToRの測定の信頼性のための良好な制御はずっと平坦でなければならない(G1の二つの別々の測定から)G1 / G1比にこのマップを比較することです。
  3. 各Vから減算することにより、0平均と1 SDにデータを正規化(X染色体を除く)すべてのウィンドウの平均値をALUEし、すべてのウィンドウのS / G1の標準偏差で結果を割ます。これは、zスコアに変換し、異なる実験間の比較を可能にするために行われます。
  4. UCSCゲノムブラウザだけでなく、15未満のデータウィンドウを含む残りの各間のギャップフラグメントに記載されているすべてのギャップ領域を削除してください。
  5. 10のパラメータでMATLAB関数csaps経由立方平滑化スプラインとの残りのフラグメントを滑らかに- 16とセットポイントですべての100キロバイトを補間します。
    注:平滑化及び補間のパラメータは、データの深さに基づいて調整されるべきです。他の適切な平滑化方法および機能は存在し、使用することができます。
  6. 視覚的に、各複製の信頼性を確認した後、すべての読み取りマージし、このデータに対して上述と同様の処理を行うことにより、より深い解像度プロファイルを計算します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

典型的なToRのマップは、マウス胚性線維芽細胞(MEF)は、 図3に示されています。それは個々のウィンドウのための正規化されたS / G1比(ステップ8.3)、ならびに立方平滑化及び補間(ステップ8.5)から得られるラインであるドット、両方を示しているので、この図は、分析プロセスを示しています。

初期、中期または後期Sで)メガベースの順番i)において大きな領域()(クリック率=一定のToR領域を同時に複製:このようなマップは、ToRのドメインの2つのタイプのパッチワークで複製プログラムの編成をキャプチャ;およびii)のToRが徐々に変化する時間的な遷移領域(TTRSを)。クリック率がTTRSと一緒に複製組織のこれら2つのタイプの全ゲノムをカバーすることにより、相互に接続されています。

比較的低いシーケンシングcのにもかかわらず、超過ToRのマッピングに使用される(1回の読み出し毎に300 bp)が、結果のマップは非常に堅牢です。 図4は、同じ領域でマウスプレB細胞の三連に比べてMEF細胞のトリプリケート間のToRマップの再現性を示しています。このようなマップの間の比較は、組織間のToRマップの差は反復間の差よりもかなり大きくされる領域として定義される差のToRを有する領域の同定を可能にします。

図2
図2:プロトコルスキーム。 CNR-のToR方法の手順を説明する模式図です。 この図の拡大版をご覧になるにはこちらをクリックしてください。

57 / 55157fig3.jpg "/>
図3:代表ゲノムのToRマップ。 MEF細胞の染色体全体1及び〜50 Mbの地域をよく見のToRのが示されています。示した様々なサイズの窓(ドット)と平滑化されたデータでS / G1値(実線)のZスコアです。低い値は後半レプリケーションに対応し、一方、高S / G1値は、初期レプリケーションに対応しています。 (;赤クリック率)と時間的な遷移領域(TTRS;緑色)の矢印は、一定のToR領域の例を指します。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図4
図4:繰り返しの再現性。 MEFの三連の(A)平滑化のToR(青)マウス染色体上の18 Mbの領域でのプレB三重(赤)1.オレンジの矢印に比べ細胞株との間の差分領域の例を指します。 6サンプル間のスピアマン相関の(B)ヒートマップ。 この図の拡大版をご覧になるにはこちらをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

CNR-Torは(Rhind N.およびGilbert DM 20によってレビュー)SにFACSおよびG1相により分割することができる任意の真核生物増殖細胞集団の原理で行うことができます。ここに記載される方法は、ヒト及びマウスのような約3ギガビットのゲノムサイズを有する哺乳動物細胞に調整しました。 (細胞調製および配列決定の深さ)CNR-のToRプロトコルにおける小さな変化は、他の真核生物にそれを調整するために、必要とされています。それが律速段階であるので、S期細胞の十分な量のコレクションに注意を払う必要があります。したがって、細胞周期のための予備的FACS実験を行うことができることを確認し、S期の細胞の量を確認するために行われるべきです。不規則な細胞周期を示す細胞のためには、分裂細胞を検出するために、BrdUで細胞をprestain、およびFACS工程まで抗BrdUメーカーのプロトコルに従うことをお勧めします。通常、細胞は、30分間、10〜20μMのBrdUで染色します。

5個細胞を得るために複製するための高速増殖する細胞のために、単一の10cmの組織培養プレート/フラスコ(約2〜5×10 6個の細胞を含む)が推奨されます。ゆっくり増殖する細胞を操作するときに、S期の細胞の割合が低くなり、したがって、一方がSに細胞の十分な量を得るために、より多くの細胞を選別する必要があるので、この量は、増大されるべきです

細胞を選別するとき、このように可能な限り最高のそれらのDNA含有量に応じて細胞の分離及び低流量が推奨さを達成することが重要です。時間分解能を最大にするためには、細胞を回収することが重要です全体のS期から。これは、可能な( 図1)と同じ幅Sをゲーティングすることによって達成されます。サブG1および初期S期汚染の両方を回避するために、一方で、G1のゲート( 図1 G1ピークから開始し、左に)狭くなるべきです。

超音波処理は、様々な方法で行うことができるが、それを各実験のキャリブレーションを必要とすることなく、堅牢かつ簡単に超音波処理を可能に集束超音波装置を使用することをお勧めします。最初の実験室でのプロトコルを確立する際にもかかわらず、200から700塩基対のサイズ分布を得るためのパラメータを校正することをお勧めします。

BrdU-IPおよびCNR-のToR - 導入で説明したように、ゲノムワイドのToRマッピングするための2つの主要な方法があります。両方の方法は、それらの間の違いにもかかわらず、類似のToRマップ(データは示さず)を得ました。 CNR-のToR方法は、最大差のbetwe以来の濃縮範囲に限定されていますBrdU-IPはるかに高い濃縮が達成されるとのに対し、早期の複製領域が早い画分にほぼ唯一のBrdUを含んでいますので、初期および後期領域の途中、二つあります。一方、BrdUでIP方式解像度を収集S期画分の数によって制限されます。その最も一般的なアプリケーションでは、(初期の後期S対)のみ2画分を細かい時間分解能の妥協をもたらす、と比較されています。 CNR-のToR方法は、しかし、全体のS期に沿って連続信号を与えます。また、BrdUでIP法は、通常、CNR-のToRの方法よりもはるかに高いバックグラウンドを与える免疫沈降に基づいています。 CNR-のToRの方法の別の利点は、最近21に記載されるように非同期培養物の配列決定データからのToR情報を抽出するために遡及的に使用できることです。最後に、CNR-のToR方法は、その単純さに起因し、それがIMMUに基づいていないので、それがダウンスケールすることができるという事実に好ましいです。無降水量。

ゲノムとエピゲノムの機能の複雑なネットワークでのToRの役割が解読されないままです。 CNR-のToR法の相対的な容易さは、その細胞の経験と徹底的にゲノムワイド検討されるべきである自然条件の多くを含むように既存のToRデータの展開を可能にします。これは、さまざまな複製ストレスの状況、核内倍加だけでなく、様々な癌の変換を含んでいます。 SNPデータと高い配列決定深度の使用はまた、別々に各対立遺伝子のToRの測定が可能になります。また、シークエンシングコストのさらなる低下が条件間の微妙な変化の同定を可能に援助を促進することができるのToRマップの解像度、の増加が可能になります。他の将来のアプリケーションは、現行の方法を改善し、 インビボでのToRを測定可能になり、細胞の少数でのToR測定を適用することによって達成することができます。

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgments

私たちは、数字を生成する際に支援するためのオリヤー語ヴァルディに感謝します。 ISグループでの作業は、イスラエル科学財団(助成番号10分の567)とグラント(#281306)を開始し、欧州研究評議会によってサポートされていました。

Materials

Name Company Catalog Number Comments
PBS BI (Biological Industries) 02-023-1A
Trypsin-EDTA BI (Biological Industries) 03-052-1B
15 mL conical tube Corning 430790
5 mL Polystyrene round Bottom tube with cell strainer cap  BD-Falcon 352235
Ethanol Gadot 64-17-5
RNAse-A 10 mg/mL Sigma R4875
Propidiom iodide 1 mg/mL Sigma P4170
Parafilm Parafilm PM-996
1.5 mL DNA LoBind Eppendorf tubes  Eppendorf 22431021
BSA Sigma A7906
1.7 mL MaxyClear tube  Axygen MCT-175-C
magnetic beads - Agencourt AMPure XP  Beckman Coulter A63881
Ultrasonicator Covaris M-series  -530092
50 µL microTUBE AFA Fiber Screw-Cap 6 x 16 mm Covaris 520096
Qubit fluorometer Invitrogen
Qubit dsDNA High Sensitivity (HS) Assay Kit Invitrogen Q32854
Electrophoresis 2200 Tape station system Agilent D1000 ScreenTape
Seqeuncing - Illumina NextSeq system Illumina SY-415-1001
Dneasy kit for DNA purification Qiagen 69504
PureProteom Magnetic Stand Millipore LSKMAGS08
Anti-BrdU/FITC DAKO F7210
FACS sorter BD FACSARIA III
FACS software BD FACSDiva v 8.0.1

DOWNLOAD MATERIALS LIST

References

  1. Farkash-Amar, S., Simon, I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 18 (1), 115-125 (2010).
  2. Yaffe, E., et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6 (7), e1001011 (2010).
  3. Hiratani, I., et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6 (10), (2008).
  4. Rivera-Mulia, J. C., et al. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Res. 25 (8), 1091-1103 (2015).
  5. Ryba, T., et al. Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia. Genome Res. 22 (10), 1833-1844 (2012).
  6. Farkash-Amar, S., et al. Global organization of replication time zones of the mouse genome. Genome Res. 18 (10), 1562-1570 (2008).
  7. Koren, A., McCarroll, S. A. Random replication of the inactive X chromosome. Genome Res. 24 (1), 64-69 (2014).
  8. Mukhopadhyay, R., et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet. 10 (5), e1004319 (2014).
  9. McNairn, A. J., Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. Bioessays. 25 (7), 647-656 (2003).
  10. Sima, J., Gilbert, D. M. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev. 25, 93-100 (2014).
  11. Kenigsberg, E., et al. The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Res. 44 (9), 4222-4232 (2016).
  12. Woo, Y. H., Li, W. H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun. 3, 1004 (2012).
  13. Liu, L., De, S., Michor, F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat Commun. 4, 1502 (2013).
  14. Goren, A., Cedar, H. Replicating by the clock. Nat Rev Mol Cell Biol. 4 (1), 25-32 (2003).
  15. Selig, S., Okumura, K., Ward, D. C., Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11 (3), 1217-1225 (1992).
  16. Smith, L., Thayer, M. Chromosome replicating timing combined with fluorescent in situ hybridization. J Vis Exp. (70), e4400 (2012).
  17. Simon, I., et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 401 (6756), 929-932 (1999).
  18. Phi-Wilson, J. T., Recktenwald, D. J. Coating agents for cell recovery. Google Patents. , (1993).
  19. Koren, A., et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet. 91 (6), 1033-1040 (2012).
  20. Rhind, N., Gilbert, D. M. DNA replication timing. Cold Spring Harb Perspect Biol. 5 (8), a010132 (2013).
  21. Koren, A., et al. Genetic variation in human DNA replication timing. Cell. 159 (5), 1015-1026 (2014).

Tags

遺伝学、問題119、ゲノミクス、複製、FACS、シーケンシング、バイオインフォマティクス、レプリケーションのタイミング
DNA含有量測定法による哺乳類の複製タイミングのゲノムワイドな決意
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Yehuda, Y., Blumenfeld, B., Lehmann, More

Yehuda, Y., Blumenfeld, B., Lehmann, D., Simon, I. Genome-wide Determination of Mammalian Replication Timing by DNA Content Measurement. J. Vis. Exp. (119), e55157, doi:10.3791/55157 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter