Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

抗ウイルス薬をスクリーニングし、宿主の免疫細胞応答を特徴づけるために、ヒトインフルエンザAウイルス感染のゼブラフィッシュモデルを使用して、

Published: January 20, 2017 doi: 10.3791/55235

Introduction

世界保健機関(WHO)によると、インフルエンザウイルスは大人5〜10%であり、毎年子どもたちの20から30までパーセントに感染し、重症の3〜5000000例の原因となり、世界中の1 50万人が死亡。インフルエンザに対する毎年のワクチン接種は、病気を防ぐための最良の選択肢のまま。 WHOグローバル・アクションプランのような取り組みは、季節性インフルエンザの流行2に関連する罹患率および死亡率を減少させるために、季節性ワクチンの使用、ワクチン生産能力、そしてより強力なワクチン戦略の研究開発が増加しています。ノイラミニダーゼ阻害剤( 例えばザナミビルおよびオセルタミビル)のような抗ウイルス薬は、一部の国で利用可能であり、発症3、4、5の最初の48時間以内に投与された場合、症状を緩和するのに有効であることが証明されています。グローバルな努力にもかかわらず、季節性インフルエンザの封じ込めのouインフルエンザウイルス抗原ドリフトは、多くの場合、ウイルス6の変化ゲノムに適応するために、現在の能力を超えるようtbreaksは、この時点では手ごわい課題です。ウイルスの新たな株を標的とワクチン戦略は、事前に開発されなければならない、時にはにより、最終的にインフルエンザシーズンに優勢株の種類が予期せぬ変化に最適に効果的な未満レンダリングされます。これらの理由から、感染症を含み、死亡率を減少させるための代替的な治療戦略を開発する明確な必要性が存在します。宿主-ウイルス相互作用の理解を達成することにより、新しい抗インフルエンザ薬およびアジュバント療法7,8開発することが可能です。

ヒト宿主-インフルエンザウイルス(IAV)の相互作用は複雑です。ヒトIAV感染のいくつかの動物モデルがINCLUD、宿主 - ウイルス相互作用への洞察を得るために開発されていますマウス、モルモット、コットンラット、ハムスター、フェレット、およびマカク9る。ホスト-IAVダイナミクスの理解を高めてきた重要なデータを提供しながら、各モデル生物は、ヒトの医療に調査結果を翻訳しようとしたときに考慮しなければならない重大な欠点を有しています。ヒトインフルエンザが9を分離に感染したとき例えば、最も広く使用されているモデルであるマウスは、容易にIAV誘発性感染症の症状を発症しません。マウスは、マウスの上皮細胞ではなくヒト上皮細胞10上で発現α-2,6シアル酸結合のα-2,3シアル酸結合を発現するので、ヒトインフルエンザ自然向性単離物欠いているためです。人間IAVに存在する赤血球凝集素タンパク質は好意的受容体媒介性エンドサイトーシス9、11介してα-2,6シアル酸結合を保有する宿主細胞に結合し、入力して隔離します12、13>まで。その結果、現在ではヒトインフルエンザのためのマウスモデルを開発中で、ケアは、人間の病気の側面を再現疾患の表現型を達成するために、インフルエンザの適切な株とマウスの適切な歪みをペアリングするために注意しなければならないことが認められています。対照的に、フェレットの上気道上皮細胞は、ヒト細胞14にいるα-2,6シアル酸結合を有します。感染したフェレットは、ヒトおよび鳥インフルエンザウイルス14、15の病原性と伝達率などのヒト疾患において観察された病理学的および臨床的特徴の多くを共有しています。彼らはまた、ワクチンの有効性試験に非常に適しています。それにもかかわらず、ヒトインフルエンザのためのフェレットモデルは、統計的にsignifiの取得を行い、主にそのサイズと畜産のコストに関連するいくつかの欠点があります挑戦カントデータ。また、フェレットは、以前のテストの有効性を困難にする薬剤の薬物動態、生物学的利用能、および毒性の違いを表示しています。例えば、フェレットはM2イオンチャネル阻害剤、アマンタジン16に毒性を示します。したがって、人間IAV感染症についての質問を研究するための動物モデルを選択する際に、その固有の利点と限界、および調査中であるホストウイルスの相互作用の側面を考慮することが重要であることは明らかです。

ゼブラフィッシュ、 ゼブラフィッシュ 、微生物感染を調査するためのユニークな機会を提供する動物モデルである、免疫応答をホストし、そして潜在的な薬物療法17、18、19、20、21、22、23、<SUPクラス= "外部参照"> 24、25、26、27、28。ゼブラフィッシュの細胞の表面上のα-2,6結合したシアル酸の存在は、感染研究で裏付けとIAV 19の蛍光レポーター株を用いてin vivoで画像化したIAV、への感受性を示唆しました。 IAV感染ゼブラフィッシュでは、抗ウイルスifnphi1MXA転写産物の発現増加は、先天性免疫応答が刺激されたことを示し、および浮腫および組織破壊を含むIAV感染ゼブラフィッシュ、で表示される病変は、ヒトインフルエンザ感染で観察されたものと同様でした。また、IAV抗ウイルスノイラミニダーゼ阻害剤ザナミビル限られた死亡率およびゼブラフィッシュ19で減少ウイルス複製。

この報告書では、システムを開始するためのプロトコルゼブラフィッシュ胚におけるIC IAV感染について説明します。プルーフの原理として臨床的に関連する用量でザナミビルを使用して、抗ウイルス活性について化合物をスクリーニングするためのこのゼブラフィッシュIAV感染モデルの有用性が実証されます。さらに、ゼブラフィッシュ浮き袋、解剖学的に哺乳動物の肺21に機能的に類似であると考えられている臓器、29、30、31に局在し、上皮IAV感染を発生するためのプロトコルは、記載されています。この局所的なIAV感染モデルを用いて、感染部位への好中球動員は、IAV感染および炎症における好中球生物学の役割の調査を可能に追跡することができます。これらのゼブラフィッシュモデルは、ヒトIAV感染の既存の動物モデルを補完し、小分子およびので増強の可能性の免疫細胞応答を試験するために特に有用ですtatisticalパワー、ハイスループットアッセイに中程度の能力、および光顕微鏡での免疫細胞の挙動と機能を追跡する能力。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべての作業は、バイオセーフティーレベル2(またはBSL2)米国疾病管理センターによって記述規格(CDC)を使用して実施し、施設内動物管理使用委員会(IACUC)によって確立された指令に基づくべきです。安全性とコンプライアンスを確保するため、適当な当局と協議してください。

1.ゼブラフィッシュの手入れとメンテナンス

  1. ゼブラフィッシュをスポーンし、実験のための胚の必要な数を収集します。 Adatto によって記載されたもののような、必要な場合、大量飼育タンク 図32は 、発育ステージの胚の多数を収集するために使用することができます。
  2. 胚は低密度で深いペトリ皿中の所望の発達段階(ローカライズされた、泳ぐ膀胱感染の全身IAV感染[セクション3]または5日後に受精のための48時間後に受精[セクション4])(まで発展することを許可します< 6を含む滅菌卵の水に28℃での100の胚/皿)蒸留水で0 / mlの海の塩( 例えば 、インスタントオーシャン)。
    1. プラスチック製のトランスファーピペットで死んだ胚を削除し、最適な健康と発展を確保するために毎日卵水を変更します。

材料および試薬の調製

  1. 蒸留水とオートクレーブ中で(7.0から7.4にpHを調整)トリカイン-Sの4 mg / mlでストック溶液を準備します。 4℃で保存。
  2. マイクロピペットプラー使用してフィラメントとホウケイ酸ガラスキャピラリーを引いて(以下の設定で例えばマイクロピペットプラーを:圧力設定= 100、熱= 550を引っ張る= [値なし]、速度= 130、時間= 110)。
    注:前に針をトリミングに、針は、針の先端にテーパーし始めるところからの長さは約12〜15ミリメートルであろう。これは、好みや用途に基づいて、しかしながら、変化することができます。長く、より緩やかなテーパーが原因胚を貫通する能力の増加と減少里のより好ましいかもしれません針曲げや折れのSK。
  3. マイクロ波を用いて100 mLの卵水にアガロース2gのメルト。深いペトリ皿にアガロース溶融注ぎ、それを固化させることにより、ラインアップや胚を注入する上でプレートを作成します。
  4. ヌクレアーゼフリー水にザナミビルの10 mg / mlでストックしてください。 -20℃で小分けし、凍結。
  5. 胚取り付けアガロースを作るためにマイクロ波を使用して50ミリリットル卵水に0.5グラムのアガロースを溶かします。撮像時に使用する直前まで50℃の水浴中で維持します。

3.全身IAV感染症(48時間後に受精)

注意:すべての研究員がIAVで作業を開始する前にワクチン接種に関する上司や医師に相談してください。

  1. #5鉗子を用いた実験の日に手動dechorionate胚。 200 / mlのトリカイン溶液中のプロセスで負傷された胚を削除し、安楽死させるように注意してください。
  2. 準備OマイクロインジェクションのためのF IAV
    注:ゼブラフィッシュ胚に感染することが示されている株は、インフルエンザA / PR / 8/34(H1N1)(APR8)、インフルエンザA X-31 A /愛知県/ 68(H3N2)(X-31)、および蛍光レポーターでありますインフルエンザ株NS1-GFP 33。 APR8とX-31、および他の株についての詳細は、インフルエンザ研究データベースで見つけることができます
    1. 以前に34、35記載されているよう発育鶏卵でIAVのNS1-GFP株を伝播します。 、収集アリコート、およびIAVを含む尿膜液を滴定し、-80℃で保存。 APR8予備滴定及びX-31ウイルスは、商業的に購入することができます。
      1. 感染の直前に、急速に手袋をはめた手でIAVのアリコートを解凍し、その後すぐに力価の損失を低減するために氷の上に置きます。
    2. ウイルス希釈
      1. APR8またはX-31ウイルスを使用している場合は、滅菌、氷冷PBSのsupplemで50%(EID50)/ mlの3.3×10 6卵感染量に希釈します0.25%フェノールレッドでentedは、層流フード中で(視覚化を助けるために)。同時に、0.25%フェノールレッドを滅菌PBSを含むコントロールを設定します。
      2. NS1-GFP系統33を使用する場合、層流フード中で0.25%フェノールレッドを含む滅菌氷冷PBS(可視化を助けるために)でNLあたりの単位(PFU)を形成〜1.5×10 2プラークに希釈します。同時に、0.25%フェノールレッドとの無菌PBS中のウイルスのように希釈された非感染鶏の卵からの尿膜腔液を含むコントロールを設定します。
      3. 使用する準備ができるまで氷上でIAVを維持します。
    3. 使用直前にmicroloaderのヒントを使用して、マイクロインジェクション針にピペットウイルス液。射出装置( 例えば MPPI-3圧力噴射システム)の適切なホルダーにマイクロインジェクションの針を挿入します。
    4. 実体顕微鏡下で表示している状態で、優しくシャープ、滅菌#5鉗子でマイクロインジェクションの針の先端をクリップ。
      注:それはrecommenされますDEDマイクロインジェクションの先端が徐々にクリップされていること。
    5. 圧力注入システムのフットペダルを押し、キャリブレーションマイクロスライド上の顕微鏡液浸油の液滴に注入します。ドロップの直径を測定します。式を使用して液滴の体積を計算するV = VボリュームがNLであり、Rはミクロンで半径/3πr3 4。
      注:ドロップ径が小さすぎると、追加のガラスがクリッピングされ得るか、または圧力およびタイミングの設定を調整することができます。液滴の直径が大きすぎると、圧力及びタイミングの設定を調整することができます。
    6. 圧力インジェクタの圧力とタイミング設定を調整および/または所望の注入量は、(一般的に1-3 NL)が達成されるまで、針の先端をreclip。 40と80秒20〜30 psiのパルス持続時間の設定との間の圧力設定が典型的です。それは毛細管圧力に対抗するが、IAV(正味ゼロ圧力)を漏れないように背圧を調整します。
  3. 注射用胚の位置を合わせます
    1. 200 / mlのトリカインでdechorionated胚を麻酔。
    2. 動きが停止すると、プラスチック製のピペットで(セクション2.3で調製)を2%アガロースプレートに10-20胚を移します。過剰な液体を除去するためにプラスチック製のピペットを使用してください。
    3. 静かにファイアーポリッシュと密封されたホウケイ酸ガラスキャピラリーとマイクロインジェクションのための胚を合わせます。優しくオリエント胚、立体顕微鏡を使用したように、キュビエのダクトまたは後部の主静脈は、マイクロインジェクション針( 図1A)に沿ったものです。
  4. IAVマイクロインジェクション
    1. ゆっくりキュビエのダクトまたは後部主静脈へのマイクロインジェクションの針を挿入します。胚( 図1A)の循環系にIAVの所望の体積を注入するためにフットペダルを押し下げます。必要に応じて胚を複数回注入することができます。
      注:注射ボーラスは、循環とDISTRIBに飲み込まれるべきです体全体uted。注入量は、注射部位に集まる場合、実験から胚を除去し、安楽死させます。
    2. 選択されたウイルスの株に特異的な制御ソリューションで別の胚に注射を繰り返します。 APR8とX-31については、セクション3.2.2.1で説明した制御を使用します。 NS1-GFPのために、セクション3.2.2.2で説明したコントロールを使用します。
  5. 33℃のインキュベーターに無菌卵水と場所を含む標識ペトリ皿に胚を移します。
    注:感染した胚は、強化されたウイルスの複製をサポートするために、33℃で増殖させなければなりません。加えて、33℃でのインキュベーションは、より密接に外部環境のより低い温度に密着しているとIAV感染症が発生した場所である人間の上気道の温度を模倣します。胚は、広い温度範囲34に順応することができます。

4.ローカライズ、Tgの水泳膀胱IAV感染(MPX:mCherryを)

  1. マイクロインジェクションのためのIAVの準備
    1. NS1-GFP株を希釈し、3.2節で説明したように注射液を制御します。
    2. 2.2節で説明したように針を準備します。
    3. 以下の例外を除いて、3.3節で説明したように膨張鰾を含む35幼虫:Tgは(mCherryをMPX)を合わせます。針は浮き袋を貫通することができ、以前36( 図2A)に記載されているようにウイルスは、浮き袋の後部に堆積させることができるように幼虫を合わせます。
  2. IAVマイクロインジェクション
    1. ゆっくり泳ぐ膀胱内にマイクロインジェクションの針を挿入した構造( 図2A)の後方に向かって所望の体積( 例えば 5 NL)を注入します。
      注:注射ボーラスが後方に向かって収集しなければならないと浮き袋の気泡は、bの必要がありますeが前方に変位します。 GFP発現は3時間後、注射で観察することを開始する必要があります。
    2. セクション3.4.2で説明したように、選択されたウイルスの株に特異的な制御ソリューションで注射を繰り返します。
  3. 33℃のインキュベーター中の滅菌卵水と場所を含むペトリ皿に幼虫を転送します。

5.抗ウイルス薬物治療

注:以下のプロトコールは、以前ガボールに示したザナミビル処理について説明します。 19。このプロトコルは、他の抗ウイルス薬をスクリーニングするために変更され、96ウェルプレート、ハイスループット形式で、複数の化合物をスクリーニングするために修正される可能性を有することができます。

  1. 3時間後の感染では、0、16.7、33.3 ngの/ mlのザナミビルを含む滅菌卵水と卵NS1-GFP-の水と制御感染魚を交換してください。
    注:これらの濃度は、foは達成生理的レベルを複製しようとするために、選択されましたヒト患者におけるザナミビルのllowing管理(100、200、または600 mgを、静脈内、1日2回または1日10 mgを1日2回、吸入)。ヒト患者における血清濃度は、9.83から45.3 ngの/ mlの36の範囲でした。
  2. 5日間にわたって、12時間ごとに卵の水を変更し、ザナミビルの適切な量を含有する滅菌卵水と交換してください。
  3. 感染の経過を追跡します。
    1. 200 / mlのトリカインにゼブラフィッシュを麻酔。視覚的にIAV感染と対照魚の間および薬物の異なる濃度に浸漬した魚のうち、感染パターンの違いを観察するステレオ蛍光顕微鏡によってGFP発現を監視します。
    2. 5日間にわたって罹患率と死亡率を追跡します。
      1. 無気力や浮腫の証拠、色素沈着、眼および頭蓋顔面奇形の違い、および前弯の兆候を含む、疾患の病理学に関連する感染症のダイナミクス、約レコード観測。疾患病状典型的には、注入されたウイルスの量に依存して、24-48時間ポスト噴射の制御感染魚に明らかになる。イメージの24時間後、注射を収集します。
      2. 5日後、感染の24時間毎に、死者の数、病的、および健康幼虫を記録。死は、識別可能な心拍の欠如によって定義されます。所望のようにデータをプロットします。例えば、健康な病的な、または死んだ魚の割合で積み重ね棒グラフとしてプロットデータは、y軸とx軸上の処置群にプロット。 19
        注:死亡率は、カプラン・マイヤー生存推定によって獲得することができます。アプリケーションに応じて、観察前述の病理学的特徴に基づいて、罹患の程度を定量化することができるスコアリングマトリックスを含む魚の罹患率をスコアリングするための代替的なアプローチを開発することが適切であり得ます。
      3. 適切な統計分析を適用するために、統計学者に相談してください。

6。好中球遊走

注:以下のプロトコールは、ローカライズ、上皮IAV感染後の浮き袋に好中球移動を追跡するための方法を記載しています。記載された方法は、遺伝的および化学的操作の影響を試験するために修飾することができます。この技術を使用して、IAV感染の間に好中球の動作の基礎となるメカニズムを特徴づけることが可能になります。

  1. イメージングのためにゼブラフィッシュのマウント
    1. 200 / mlのトリカインに結像される幼虫を麻酔。
    2. 卵、水(〜50-100μl)を小滴で、24ウェル、ガラスボトムプレートのウェルにNS1-GFPに感染した幼虫個々 のTg(mCherryをMPX)を転送ます。他のIAV感染と対照魚と繰り返します。
    3. ゆっくりと大きな気泡を導入しないように注意しながら、各ウェル(セクション2.5)にメディアをマウント1%アガロース胚を追加します。
      1. それはその側面に搭載されているように、ゆっくりと幼虫の位置を調整します。グッディとヘンリー37は、フィラメントとホウケイ酸ガラスキャピラリーに取り付けられ、所定の位置にsupergluedされた昆虫のピンを使用して、このアプリケーションで十分に機能するプローブを作成する方法について説明します。
    4. アガロースが硬化したら、軽く200 / mlのトリカインを含む卵の水で個々のウェルを埋めます。
    5. 共焦点顕微鏡を用いて、浮き袋に焦点を当てた20Xの対物レンズを用いて、明視野および蛍光画像のAZスタックシリーズをキャプチャします。
      1. 彼らはすべての目に見え、観察緑と赤の蛍光を捕捉するように上限と下限を設定します。
      2. 2.0マイクロ秒/≤4μmであるステップとピクセルで画像をキャプチャします。画素あたりの時間を増加させ、ステップ( 例えば 0.5から1.0μm)との間の距離を小さくすると画像の解像度と品質を向上します。
      3. 層をマージして2次元画像を生成します。
      4. 現在私MPX-mCherryを陽性好中球の数を比較nはIAV感染および制御注入ゼブラフィッシュの鰾。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

ここでは、ゼブラフィッシュにおける全身IAV感染は、薬効( 図1A)をテストするために使用することができる方法を示すデータが提供されます。 48時間後、受精における胚は、ウイルス感染を開始するためキュビエのダクトを介しAPR8( 図1C、1F)、X-31( 図1D、1G)、またはNS1-GFP( 図1H-1I)を注射します。 48時間後に受精で胚の別のコホートは、ウイルス感染( 図1B、1E)のコントロールとして機能するように注入しました。 48時間後に感染することにより、IAVを注入したゼブラフィッシュは、心膜( 図1G)全体に存在する赤血球で、心膜浮腫( 図1C、1D)と循環停止( 図1F)の証拠を示しました。早ければ3時間後に感染が認められたとして、蛍光顕微鏡によりNS1-GFP、GFPの最初の式を使用。その時点で、ゼブラフィッシュは、33.3 ngのに曝露しましたノイラミニダーゼ阻害剤ザナミビルの/ mlの用量。この用量は、ヒト患者に与えられた200mgの投与量とほぼ同等です。ザナミビル( 図1H、1H ')にさらされていないコントロール感染した魚は、浮腫および全身GFP発現の特徴を示しました。ザナミビルにさらさNS1-GFPに感染した幼虫に肉眼的病理とGFP蛍光( 図1I、1I ')を減少が観察されました。ほとんど変化は卵黄嚢で観察されたGFPの減少は、幼虫の体の中で最も顕著でした。改良された水泳の運動性および心臓における浮腫レベルの低下、および生存率の改善によって証明されるようにザナミビルで処理した魚は、より少ない罹患率を示しました。これらの知見は、より包括的な研究19を補完し、薬剤スクリーニングのために、このモデルの値を示しています。

ローカライズされたゼブラフィッシュの水泳膀胱感染モデル31は、IAV infeのために適応されていますction。ローカライズされた、上皮感染( 図2A)を開始するために、幼虫:NS1-GFPウイルスは5日、受精後のTg(mCherryをMPX)の鰾に注入しました。 PBSは、IAV感染細胞に対する好中球動員の特異性を実証するための対照として水泳膀胱に注入しました。浮き袋にmCherryを標識好中球の動員を追跡しました。 20時間の感染後、PBSを注射したコントロールにIAV感染魚の相対の鰾への好中球のかなりの移行( 図2B、2B '、2C、2C')で観察されました。これらのデータは、IAVは、それが人間の肺に好中球を動員するのと同様に、浮き袋に好中球を動員することができることを示しています。

図1
図1:抗ウイルス薬治療は、ゼブラフィッシュにおけるIAV感染の重症度を軽減します。 ( (B - I)総病理学およびIAVとキュビエのダクトに注入ゼブラフィッシュ胚のGFP蛍光。 (BG)魚IAVで感染させ、ウイルス感染および疾患の徴候のために48時間の感染後に調べました。 (B - D)制御またはIAV感染魚の単一焦点面には、(サイドマウントは、左前、背のトップ、4X倍率、スケールバー= 500μm)で収集しました。 (B)制御の魚はPBSを注射し、正常な形態を示しました。 (C - D)APR8(C)またはX-31(D)に感染した胚一般的に発揮心膜浮腫(満たされた矢印)。胚はまた、(C)において明らかな壊死組織を有していました。 (E)コントロールの魚は、PBSを注射し、病理学の証拠(スケールバー= 250μm)を表示しませんでした。 APR8に感染し(F)胚は循環停止(ノッチ矢尻、スケールバー= 250μm)を表示します。 (G)胚は、X-31インフルエンザの両方が表示さ心膜(ノッチ矢尻、スケールバー= 100μm)の全体に心膜浮腫(矢印)およびプールされた赤血球を注射しました。 (H、I)IAV感染ゼブラフィッシュ(スケールバー= 200μm)の上の抗ウイルス薬の効果を示す代表的な画像を。 (H)明及び(H ')NS1-GFP(抗ウイルス薬治療)を注入した胚を示す蛍光画像。特に総主静脈領域に浮腫およびGFPの発現に注意してください。 (I、I ')治療は抗ウイルス薬で未感染を減少させましたイオン、特に減少ウイルス負荷の指標となる血管系、ボディの白い点線内の減少、浮腫、および減少したGFP発現を含む減少病理学によって証明されるように。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図2
図2:好中球は、ローカライズされたIAVの感染部位に動員されています。 (A)の回路図は5日、受精後に膨張したゼブラフィッシュ浮き袋に局在IAVの感染を開始するために必要な注入のアプローチを実証します。 NS1-GFP感染後の浮き袋に(B、C)好中球動員。 Zスタック画像(4μmのステップ)は、共焦点顕微鏡(20倍倍率)によって収集しました。画像は横ばい2次元(サイドマウント、前方左側、背面上部)にtened。 Tgは(MPX:mCherryを)ゼブラフィッシュ(5日受精後)は(B、B ')を注射した(PBSおよび0.25%フェノールレッドまたはC、C)で希釈した尿膜腔液「NS1-GFP(7.2×10 2 PFU / 0.25%フェノールレッドで尿膜液、PBSに希釈した胚)。 16時間後の感染では、好中球はIAV感染浮き袋に存在した(C、C ':緑色蛍光がローカライズされた感染を示し、Cは':赤細胞は好中球であり、白抜きの矢印は、代表的な好中球を識別します)。 (B、B ')IAVの感染を示すGFP発現の証拠はないと浮き袋に好中球の無動員をPBSで尿膜液を注入した幼虫で観察されました。 PLEASEこの図の拡大版をご覧になるにはこちらをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ヒト宿主 - 病原体相互作用をモデル化するために、小さな動物を使用することから得られる利益を最大化するためには、モデルシステムの固有の利点を生かす研究課題とテスト仮説をフレームに重要です。人間IAV感染のモデルとして、ゼブラフィッシュは、高い繁殖力、光学的透明度、薬物スクリーニングに従順、および好中球などの免疫細胞を標識したトランスジェニック系統の可用性を含むいくつかの長所を持っています。ゼブラフィッシュは、炎症および先天性免疫の研究のためのマウスモデルシステムにますます強力な代替手段として開発されました。彼らは開発の最初の4-6週間の間に機能して適応免疫応答を欠いているので、ゼブラフィッシュは、傷害および感染37から保護するために、自然免疫応答をマウントします。開発中のこの初期期間においては、単離し、単独で、自然免疫応答に起因する抗ウイルス応答のメカニズムを研究することが可能です。ティ赤色蛍光タンパク質と好中球のラベル、:作品は、Tgは(mCherryをMPX)のようなトランスジェニックゼブラフィッシュ系統の開発によって促進されてきました。

ヒト疾患に似ているIAV感染のためのゼブラフィッシュモデルは、最近19を説明しました。これは、ゼブラフィッシュは、IAVは、結合付着、および細胞を入力する親和性をウィルス提供するそれらの細胞上のα-2,6結合シアル酸残基を有することが実証されました。この原稿ではとガボールらインチ 図19は 、それが示されていることIAVの二つの異なる株(A / PR / 8/34 [H1N1]およびX-31 A /愛知県/ 68 [H3N2])、ならびにGFPを生じる組換えNS1-GFP株感染細胞における翻訳は、感染複製、および幼虫のゼブラフィッシュの循環系に注入した場合の死亡率を引き起こす可能性があります。浸漬経由でIAVへの露出が確実に動作しないように、ウイルスの注入は、この感染症法に重要です。感染した魚は、転送すべきですウイルスの複製を確保するために33℃のインキュベーターに赤いです。インフルエンザ感染が発生し、人間の気道は、一般的に33°Cであることに注意することが重要です。ゼブラフィッシュのインキュベーションのためのより多くの典型的な温度である28℃、でのインキュベーションは、信頼性の高い感染症の生成に失敗しました。また、IAVの製造元またはバッチから受信した各ロットが原因でゼブラフィッシュに感染し、疾患の進行に影響を与える変動に実験に使用する前に製造しテストすることが不可欠です。感染量が正確に滴定するとき、IAVのこれらの株を感染させたゼブラフィッシュの大半はその次第に悪化し、早ければ24時間の感染後のような、浮腫に代表される総疾患の表現型を示すべきで、48時間後感染による頭蓋顔面の異常、 72時間の感染後、約50%前弯は、5日後の感染によって感染に屈するべきです。 48時間の感染後に組織病理は、鰓の証拠、ヘッド腎臓、およびを含むべきです肝臓の壊死、ならびに心膜中の流体の兆候。ゼブラフィッシュにおけるIAV感染の予測可能な結果として、これらの知見を確立するには、候補抗インフルエンザ薬化合物の候補をスクリーニングすることが可能です。これを考慮して、ガボール元の知見に基づいて、抗ウイルス薬をスクリーニングするための実証の原則プロトコル 19が示されています。 NS1-GFP蛍光によって決定されるように、ヒトの血液中に観察されたレベル、病的状態の発症遅延を模倣すると予測およびウイルス複製/拡散に明らかな効果により死亡率を減少させる用量で、ノイラミニダーゼ阻害剤ザナミビルを用いて、観察されました。ゼブラフィッシュIAVモデルは、高スループットの小分子画面への中等度に理想的に適しています。感染症のみキュビエのダクトまたは後部主静脈を経由して循環にのみ手動注入を介して発生する可能性がありますので、画面の大きさは、技術者のESTABの数によって制限されています感染症や技術を実行する際に、その習熟度をlishing。それにもかかわらず、時間あたり技術当たり少なくとも200ゼブラフィッシュ胚を注入することができます。ゼブラフィッシュ感染モデルにザナミビルのための抗ウイルス活性を実証することに成功しているが、ゼブラフィッシュを含むすべての動物モデルにおける薬物スクリーニングは、慎重に38を制御しなければならないことを認識しなければなりません。薬物が吸収され、代謝される方法は、から動物対動物異なり、予測することは困難です。それにもかかわらず、新しい抗インフルエンザ薬をスクリーニングするための方法として、このゼブラフィッシュIAV感染モデルは、ヒトへのオーソロガスおよび高度に保存された統合的な生理機能を持つ臓器を動物に小分子の何千もを調査するためのエキサイティングな機会を提供します。

IAVは浮き袋19に注入されたときに全身感染症のためのモデルであることに加えて、ゼブラフィッシュはまた、ローカライズされた感染症のモデルとしての役割を果たすことができます21、29、30、31の機能的類似体。適切に滴定した場合、5日の受精後にNS1-GFP株に感染しているゼブラフィッシュは、1からd感染後浮き袋の上皮の周りに点状の蛍光の証拠を示すべきです。この局部的な感染戦略を使用して、感染に応答した好中球の挙動を追跡することができます。ヒト好中球のように、ゼブラフィッシュ好中球は組織損傷および感染に対する急性応答の中に機能しており、慢性炎症24の間に重要な役割を果たして、自然免疫における主要な細胞メディエーターです。好中球は、インフルエンザ感染に対する免疫応答に重要な役割を果たしていること成長の認識があります。確かに、それは、免疫応答を媒介に「両刃の剣」も明らかなように、その好中球機能となっています。 WHIインフルエンザ感染を制御するのに必要な抗ウイルス応答に必須LEは、好中球は、宿主組織に損傷を与え、死亡率39、40、41、42、43のリスクを高めることができ、肺における過剰炎症環境に貢献します。ゼブラフィッシュとヒトのゲノム間の遺伝子のシンテニーのかなりの節約があり、このオルソロジーで、好中球生物学の重要な機能の保全もあります。ゼブラフィッシュ好中球は、多型核、一次および二次顆粒の存在、および機能ミエロペルオキシダーゼおよびNADPHオキシダーゼ22を含むヒト好中球、に多くの類似点を負担します。また、ゼブラフィッシュ好中球は細菌を巻き込むし、好中球細胞外トラップ(のNET)44を解放することができます。いくつかのトランスジェニックゼブラフィッシュの系統は、Dされました特定し、好中球の生物学27、45、46、47の機能を分析するために役立つeveloped。この感染プロトコルが柔軟であり、これらの代替ツールを使用して複数の好中球の機能をテストするために修飾することができます。このローカライズされたゼブラフィッシュIAV感染モデルに対処する宿主免疫応答に関連する質問を可能にし、好中球によって媒介される特定のもの。

哺乳動物モデルの種で行われた研究は、貴重な情報40、48、49、50、51、52、53、54、55が、IAV感染時間を含む、いくつかのリアルタイム実験が得られていますaveがホストでの脊椎動物先天性免疫応答の構成要素間の複雑な相互作用の理解を制限し、実施されて。過去10年間、ゼブラフィッシュ動物モデル系の使用は、宿主-病原体相互作用21、47、56、57に関する情報の流域をもたらした、とも薬物発見のためのツールとしての重要な情報を提供してきました。分子技術およびイメージング顕微鏡の組み合わせは、先天性免疫応答のより良い理解を可能にしており、どのように、これらは、 インビボ 17、18、27 明らかされています。ゼブラフィッシュは、IAV 19で感染させることができるという発見、およびヒトを含む哺乳動物系とゼブラフィッシュ株式その重要な免疫学的類似性は、研究への扉を開きました重要なヒトウイルス病原体の。記載されているプロトコルは、他のアプリケーションに適応可能であり、人間の健康に深刻な臨床影響を与える可能性のあるホストウイルスの相互作用に関する重要な発見をもたらす可能性を秘めています。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Instant Ocean Spectrum Brands SS15-10
100 mm x 25 mm sterile disposable Petri dishes  VWR 89107-632
Transfer pipettes  Fisherbrand 13-711-7M
Tricaine-S (MS-222) Western Chemical
Borosilicate glass capillary with filament  Sutter Instrument  BF120-69-10
Flaming/Brown micropipette puller  Sutter Instrument P-97
Agarose Lonza 50004
Zanamivir AK Scientific G939
Dumont #5 forceps  Electron Microscopy Sciences 72700-D
Microloader tips Eppendorf 930001007
Microscope immersion oil Olympus IMMOIL-F30CC
Microscope stage calibration slide  AmScope MR095
MPPI-3 pressure injector  Applied Scientific Instrumentation
Stereo microscope Olympus SZ61
Back pressure unit Applied Scientific Instrumentation BPU
Micropipette holder kit Applied Scientific Instrumentation MPIP
Foot switch Applied Scientific Instrumentation FSW
Micromanipulator Applied Scientific Instrumentation MM33
Magnetic base Applied Scientific Instrumentation Magnetic Base
Phenol red  Sigma-Aldrich  P-4758
Low temperature incubator VWR 2020
SteREO Discovery.V12 Zeiss
Illuminator Zeiss HXP 200C
Cold light source Zeiss  CL6000 LED
Glass-bottom multiwell plate, 24 well Mattek P24G-0-13-F
Confocal microscope Olympus IX-81 with FV-1000 laser scanning confocal system
Fluoview software Olympus
Prism v6 GraphPad
Influenza A/PR/8/34 (H1N1) virus  Charles River  490710
Influenza A X-31, A/Aichi/68 (H3N2)  Charles River  490715
Influenza NS1-GFP Referenced in Manicassamy et al. 2010
Tg(mpx:mCherry) Referenced in Lam et al. 2013

DOWNLOAD MATERIALS LIST

References

  1. W.H.O. Influenza (Seasonal). , Available from: http://www.who.int/mediacentre/factsheets/fs211/en/ (2014).
  2. W.H.O. W.H.O. Global Action Plan.. , Available from: http://www.who.int/influenza_vaccines_plan/en/ (2011).
  3. De Clercq, E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5 (12), 1015-1025 (2006).
  4. von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 6 (12), 967-974 (2007).
  5. Fiore, A. E., et al. Antiviral Agents for the Treatment and Chemoprophylaxis of Influenza. Centers for Disease Control and Prevention. , 1-26 (2011).
  6. Krammer, F., Palese, P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 14 (3), 167-182 (2015).
  7. Ren, H., Zhou, P. Epitope-focused vaccine design against influenza A and B viruses. Curr Opin Immunol. 42, 83-90 (2016).
  8. Webster, R. G., Govorkova, E. A. Continuing challenges in influenza. Ann N Y Acad Sci. 1323, 115-139 (2014).
  9. Bouvier, N. M., Lowen, A. C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses. 2 (8), 1530-1563 (2010).
  10. Ibricevic, A., et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol. 80 (15), 7469-7480 (2006).
  11. Skehel, J. J., Wiley, D. C. RECEPTOR BINDING AND MEMBRANE FUSION IN VIRUS ENTRY: The Influenza Hemagglutinin. Annu Rev Biochem. 69 (1), 531 (2000).
  12. Rust, M. J., Lakadamyali, M., Zhang, F., Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 11 (6), 567-573 (2004).
  13. Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T., Dermody, T. S. The sweet spot: defining virus-sialic acid interactions. Nature Rev Microbiol. 12 (11), 739-749 (2014).
  14. Herlocher, M. L., et al. Ferrets as a Transmission Model for Influenza: Sequence Changes in HA1 of Type A (H3N2) Virus. J Infect Dis. 184 (5), 542-546 (2001).
  15. Belser, J. A., Katz, J. M., Tumpey, T. M. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 4 (5), 575-579 (2011).
  16. Cochran, K. W., Maassab, H. F., Tsunoda, A., Berlin, B. S. Studies on the antiviral activity of amantadine hydrochloride. Ann N Y Acad Sci. 130 (1), 432-439 (1965).
  17. de Oliveira, S., Boudinot, P., Calado, A., Mulero, V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 194 (4), 1523-1533 (2015).
  18. de Oliveira, S., et al. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 190 (8), 4349-4359 (2013).
  19. Gabor, K. A., et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis Model Mech. 7 (11), 1227-1237 (2014).
  20. Galani, I. E., Andreakos, E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 98 (4), 557-564 (2015).
  21. Gratacap, R. L., Rawls, J. F., Wheeler, R. T. Mucosal candidiasis elicits NF-kappaB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech. 6 (5), 1260-1270 (2013).
  22. Henry, K. M., Loynes, C. A., Whyte, M. K., Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 94 (4), 633-642 (2013).
  23. Mathias, J. R., et al. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci. 120 (19), 3372-3383 (2007).
  24. Shelef, M. A., Tauzin, S., Huttenlocher, A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev. 256 (1), 269-281 (2013).
  25. Walters, K. B., Green, J. M., Surfus, J. C., Yoo, S. K., Huttenlocher, A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 116 (15), 2803-2811 (2010).
  26. Yoo, S. K., et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell. 18 (2), 226-236 (2010).
  27. Yoo, S. K., Huttenlocher, A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol. 89 (5), 661-667 (2011).
  28. Yoo, S. K., et al. The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci. 125 (23), 5702-5710 (2012).
  29. Winata, C. L., et al. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol. 331 (2), 222-236 (2009).
  30. Perry, S. F., Wilson, R. J., Straus, C., Harris, M. B., Remmers, J. E. Which came first, the lung or the breath? Comp Biochem Physiol A Mol Integr Physiol. 129 (1), 37-47 (2001).
  31. Gratacap, R. L., Bergeron, A. C., Wheeler, R. T. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. J Vis Exp. (93), e52182 (2014).
  32. Adatto, I., Lawrence, C., Thompson, M., Zon, L. I. A New System for the Rapid Collection of Large Numbers of Developmentally Staged Zebrafish Embryos. PLoS ONE. 6 (6), e21715 (2011).
  33. Manicassamy, B., et al. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci USA. 107 (25), 11531-11536 (2010).
  34. Lawrence, C. The husbandry of zebrafish (Danio rerio): a review. Aquaculture. 269 (1), 1-20 (2007).
  35. Lam, P. -y, Harvie, E. A., Huttenlocher, A. Heat Shock Modulates Neutrophil Motility in Zebrafish. PLoS ONE. 8 (12), e84436 (2013).
  36. Shelton, M. J., et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. 55 (11), 5178-5184 (2011).
  37. Sullivan, C., Kim, C. H. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25 (4), 341-350 (2008).
  38. MacRae, C. A., Peterson, R. T. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 14 (10), 721-731 (2015).
  39. Brandes, M., Klauschen, F., Kuchen, S., Germain, R. N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 154 (1), 197-212 (2013).
  40. Narasaraju, T., et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 179 (1), 199-210 (2011).
  41. Pillai, P. S., et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 352 (6284), 463-466 (2016).
  42. Stifter, S. A., et al. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog. 12 (1), e1005378 (2016).
  43. Vlahos, R., Stambas, J., Selemidis, S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci. 33 (1), 3-8 (2012).
  44. Palic, D., Andreasen, C. B., Ostojic, J., Tell, R. M., Roth, J. A. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J Immunol Methods. 319 (1-2), 87-97 (2007).
  45. Renshaw, S. A., et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  46. Mathias, J. R., et al. Characterization of zebrafish larval inflammatory macrophages. Dev Comp Immunol. 33 (11), 1212-1217 (2009).
  47. Pase, L., et al. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol. 22 (19), 1818-1824 (2012).
  48. Drescher, B., Bai, F. Neutrophil in viral infections, friend or foe? Virus Res. 171 (1), 1-7 (2013).
  49. Iwasaki, A., Pillai, P. S. Innate immunity to influenza virus infection. Nat Rev Immunol. 14 (5), 315-328 (2014).
  50. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13 (3), 159-175 (2013).
  51. Summers, C., et al. Neutrophil kinetics in health and disease. Trends Immunol. 31 (8), 318-324 (2010).
  52. Tate, M. D., Brooks, A. G., Reading, P. C. The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res. 9, 57 (2008).
  53. Tate, M. D., et al. Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol. 183 (11), 7441-7450 (2009).
  54. Tumpey, T. M., et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol. 79 (23), 14933-14944 (2005).
  55. Wheeler, J. G., Winkler, L. S., Seeds, M., Bass, D., Abramson, J. S. Influenza A virus alters structural and biochemical functions of the neutrophil cytoskeleton. J Leukoc Biol. 47 (4), 332-343 (1990).
  56. de Oliveira, S., et al. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium. Dev Comp Immunol. 49 (1), 44-48 (2015).
  57. Harvie, E. A., Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol. 98 (4), 523-537 (2015).

Tags

感染症、問題119、ゼブラフィッシュ、インフルエンザ、ウイルス、自然免疫、ホスト病原体、抗ウイルス、医薬品、好中球、移行
抗ウイルス薬をスクリーニングし、宿主の免疫細胞応答を特徴づけるために、ヒトインフルエンザAウイルス感染のゼブラフィッシュモデルを使用して、
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Sullivan, C., Jurcyzszak, D., Goody, More

Sullivan, C., Jurcyzszak, D., Goody, M. F., Gabor, K. A., Longfellow, J. R., Millard, P. J., Kim, C. H. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses. J. Vis. Exp. (119), e55235, doi:10.3791/55235 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter