Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

リン酸化と大腸癌細胞におけるタウ蛋白の局在と微小管結合の試金

Published: October 10, 2017 doi: 10.3791/55932

Summary

本稿では、測定、微小管と薬物治療に続く細胞内のタウのローカリゼーションのタウ結合タウ タウを測定するための標準プロトコルについて説明します。これらのプロトコルは、薬やタウ タウや微小管結合を対象とする他の化合物をスクリーニングするため繰り返し使用できます。

Abstract

微小管関連タンパク質 tau 主軸索に局在する神経蛋白質であります。一般的にタウの微小管重合と安定化になっているので正常な神経機能に不可欠です。ニューロンのほかにタウはひと乳癌、前立腺、胃、大腸、膵癌それはほぼ同じような構造を示していて、神経のタウとして同様の機能を発揮で表されます。タウとそのリン酸化の量は、微小管の安定剤としてその機能を変更でき、別の神経変性疾患、アルツハイマー病などのペアのヘリカル フィラメントの開発に 。タウとその微小管結合特性のリン酸化状態の判断が重要です。また、タウの細胞内の局在を調べることは、さまざまな病気で重要です。この原稿詳細標準プロトコル リン酸化タウとクルクミンと LiCl 治療の有無、大腸癌細胞の微小管のタウ バインディングを測定するため。これらの治療法は、癌細胞の増殖と開発を停止する使用ことができます。低量の抗体を使用している間免疫組織化学と共焦点顕微鏡を用いたタウの細胞内局在性を調べたこれらのアッセイは、タウ タウや微小管結合に影響を与える化合物をスクリーニングするため繰り返し使用できます。関連抗癌剤は可能性のあるこれらのプロトコルを使用して特徴付けられるまたは異なるタウオパチーの治療薬が使用されます。

Introduction

タウはもともと共同チューブリン1で精製した熱安定性微小管関連タンパク質として同定されました。タウは、高等真核生物2,3,4でのみ表されます。タウの主な機能は、微小管アセンブリ1,5,6を制御することです。また、微小管7、軸索輸送89軸索直径の変化、神経変性疾患10神経極性の形成の重合化に貢献します。タウは、いくつかのシグナル伝達経路を制御するタンパク質の足場としても機能します。ラット脳研究は、タウを提案するニューロン固有でありそれが主に軸索11に局在すること。中枢神経の軸索の開発で主要な役割を果たすタウ タウが微小管重合と神経の開発に不可欠な仮説この仮説は後の in vitroin vivoの実験により確認します。ニューロンに加えタウは異なる非神経細胞、肝臓、腎臓、筋肉細胞12,13などで表されます。また、ひと乳癌、前立腺、大腸、胃、膵癌細胞ラインおよび組織14,15,16,17,18,タウを表現します。19. タウ封入体筋炎、封入体20のツイスト tubulofilaments として分かった。

タウは、いくつかの翻訳後修飾を運ぶことができます。すべてのポスト翻訳の修正のリン酸化が最も一般的です。増加 tau のリン酸化は、最終的に不安定細胞骨格微小管の親和性を減少します。80-5 リン酸化サイトは、タウ蛋白のヒトのアルツハイマー病脳組織から分離されたに記載されています。これらのサイトの 53% は唯一 6% チロシン残基21,22,2341% トレオニン、セリンを構成します。Tau のリン酸化に影響を与える他のポスト翻訳の修正には感受性と溶解バインディング機能局在化。正常範囲以上にも tau のリン酸化 (またはリン酸基を完全に飽和させる) アルツハイマー病24の構造と機能特性を複製するタウとして知られています。タウは、軸索の微小管の正常な機能維持し、確実に生理学的な条件の下で正常な神経機能します。ただし、過リン酸化タウが微小管分解のため神経細胞の損失の原因とよく組織化された微小管結合を維持するために失敗します。リン酸化タウの正常なレベルに必要機能、適切なタウが、タウがその特徴的なリン酸化レベルが変更される、過リン酸化25の場合正常に機能に失敗します。アルツハイマー病と他の加齢に伴う変性疾患、タウ過リン酸化になり、ペアのヘリカル フィラメントと原線維変化26,27を形成します。したがって、tau のリン酸化と微小管結合を決定するための方法が重要です。

加齢関連のがんの場合、大腸がんは 3 番目は最も頻繁両方の男性と女性の28の第 3 著名な死の原因となる癌を診断です。大腸癌は、西部の世界29の主な死の原因となる癌の一つです。大腸がんとアルツハイマー病は、高齢化に関連付けられているため、両方起こる主に先進国の人々 が同じような食生活を楽しむ 2 つの病気は相関何とか可能性があります。また、タウ陽性とタウ陰性の癌細胞は、化学療法剤、例えば、パクリタ キセル16に異なる対応します。

クルクミンは、ウコン、インド スパイス ウコン30の主要な誘導体の 1 つです。何世紀にも南アジア人口は日常的に彼らの食事療法でウコンを消費しています。クルクミンは大腸癌、アルツハイマー病、糖尿病、嚢胞性線維症、炎症性腸疾患、関節炎、高脂血症、動脈硬化症、虚血性心疾患31,を含む、さまざまな病気の治療に使用します。32,33,34,35,36,37,38. リチウムできますも大腸癌細胞を殺すか39彼らの増殖を防ぐ。リチウムは、タウ凝集が減り、、トランスジェニック マウス モデル41,42,43に見られるそのタウを防止、アルツハイマー病40の治療にも使用できます。 44

この原稿を目指して: 1) 総タウと扱われた細胞内リン酸化タウ発現レベルを測定します。2); リン酸化タウ全体を測定する脱燐酸化酵素試金を記述します。3); タウの微小管結合を調べる・ 4) クルクミンまたは LiCl で治療した大腸癌細胞株における共焦点顕微鏡によるタウをローカライズします。結果では、クルクミンと細胞治療、大腸癌のためおそらく良い化学療法剤であるし、LiCl による治療両方の総タウの式を減らすことができます大腸癌細胞株におけるタウをリン酸化を明らかにします。これらの治療法は、タウの核内移行を引き起こすことも。しかし、突然、クルクミンはタウの微小管への結合を改善するために失敗します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1 試薬調製

プロテアーゼ阻害剤カクテル溶液の
  • (1 mM) 特異フッ化物溶液、10 の追加の 10 μ
      μ l (100 x の在庫から 1 x) とホスファターゼの 10 μ l (100 x の在庫から 1 x)。完全な RIPA 溶解バッファーを準備する 1 x radioimmunoprecipitation 検定法 (RIPA) バッファーの 1 mL に阻害剤カクテル ソリューションです。
    1. 一般的なチューブリン バッファー (PEM) x 10 の準備
      1. 追加 800 mM (6.0474 g) ピペラジンの N ' - ビス - 2-ethanesulfonic 酸, 10 mM (95.1 mg) エチレング リコール-bis(β-aminoethyl ether)-N, N, N '、N '-四酸、10 mM (51 mg) MgCl 2、および 50 mL のチューブで 1.25 M (10 m 3 mL) NaOH、15 mL の蒸留水水とミックスし、渦を使うことで溶かします。(6.9 はず) pH を確認してください。場合 pH > 6.9, バッファーを破棄し、新鮮な多くのリメイクします
        。 注: 水酸化ナトリウムは pH に 6.9 がオーバー シュートしないように 1.25 メートル以下でなければなりません。HCl を使用して pH を調整するためにお勧めできません > 6.9
      2. 追加 NaOH pH は 6.9 まで滴下。10 X PEM バッファーの最大 25 mL に蒸留水を追加します。最後に、注射器と注射器にある、0.2 μ m のフィルターを使用してフィルターします。1.5 mL チューブの因数にこのバッファーを分割し、4 で保存 ° C
    2. 準備 5 x サンプルバッファーの還元剤と染料
      1. ミックス 300 μ L (60 mM) 1 M トリス-HCl (pH 6.8)、2.5 mL (25%) 50% グリセロール、10% ドデシル硫酸ナトリウム (SDS) の 1.2 ml の蒸留水 1 mL (2%) の SDS のサンプルバッファー x 5 の 5 mL を補うため。デパート − 20 ° C
        注: ためグリセリンは、粘性が、測定 1.25 mL グリセリン困難です。100% のグリセロールの 1 mL の重さ 1.26 g。したがって、100% のグリセロールの 1.575 グラムの重量を量る (1.25 mL の 100% に相当する 50% のグリセロールの 2.5 ml) 15 mL のチューブ。他のコンポーネントとミックスします

    2。細胞培養、クルクミンによる治療または LiCl 治療と蛋白質の表現の検討

    10% 胎児牛を添加した最低限不可欠なメディア (MEM) を含む
    1. 追加 1 ~ 10 細胞 6 HCT 116 x 100 mm にティッシュ文化皿血清 (FBS) および 1% ペニシリン-ストレプトマイシン。培養 1 日後電池が 60-70% の合流点に達するされます
      。 注: 必要な枚数下記の治療法の数によって異なります
    2. 細胞 (顕微鏡を用いた近似) ~ 65% の合流点に達する補完 MEM 培地を取り除き、5 μ M、10 μ M と 30 μ M のクルクミンや 25 mM、50 mM と 100 mM LiCl と無血清 MEM を追加します。37 ° C 5% CO 2 を含む加湿雰囲気の中で 24 時間インキュベートします
    3. 治療後 24 時間は、1 mL 冷たいリン酸緩衝生理食塩水 (PBS) と細胞を洗浄し、細胞スクレーパーを使用して細胞をこすり。転送 1.5 mL に無断複製されたセル管を遠心し、細胞ペレットを取得する 4 ° C で 1,800 x g で 4 分間遠心します
    4. は、定期的にチューブをタップしながら 4 ° C、20 分で完全な RIPA バッファーを 100 μ l 添加の餌を中断することにより、細胞を溶解させます。サンプルを簡単に超音波照射します
    5. 4 で 22,570 x g で 20 分間のベンチトップ遠心で細胞ホモジネートを遠心分離機 ° C は、ピペットを使用してその他のラベルの付いた管に培養上清を転送します
    6. ブラッドフォードの試金 45 商業蛋白質の試金キットを使用して培養上清タンパク質濃度を測定します
    7. 4 のセル lysates の等しい蛋白濃度 (10 μ g のタンパク質/13 μ L のサンプル) の準備サンプル X SDS ゲル読み込みバッファー。4 x 400 mM ジチオトレイトール (DTT) を含む新鮮な SDS ゲル読み込みバッファーを準備します
      。 注: この時点で、サンプルで保存できます − 20 ° C が必要される場合
    8. 加温 5 分間 100 ° C で熱ブロックのサンプル渦を使用してサンプルを混合し、10 ~ 15 のそれらを冷却するを待つ分
    9. 電気泳動システムのアセンブル
      1. ロード 10 μ g タンパク質電気泳動 (SDS-PAGE) 用 10 %sds ポリアクリルアミドのゲルのウェルあたり (13 μ L サンプル)。一車線にゲル分子はしごをロードします
        。 注: 電気泳動が開始すると、蛋白質の梯子は見かけの分子量のタンパク質のバンドに解決されます。未知の蛋白質バンドの分子量を推定するこれらのバンドを使用します
      2. サンプルをロードした後、電気泳動システムのプラスとマイナスの電極を一定の電圧を維持するために電源に接続します。最初は、スタッキングのゲルから解決のゲルに蛋白質のサンプルを移動する 20 分間 70 V で開始します。サンプルおよび蛋白質の梯子のゲルの端に達するまで、約 70-120 分の 125 V に電圧を高める
      3. 電気泳動の終了後、湿式電気的ブロッティング法を用いたポリフッ化ビニリデン (PVDF) 二フッ化膜にゲルを転送します。転送ブロック対 100 ~ 100 分 4% ウシ血清アルブミン (BSA) 室温で約 25 の 90 分のブロック バッファー内膜 ° C
    10. 分子量の梯子の側にそれを切断することによって、しみをマークします。しみを切断するため、透明プラスチック シートと鋭いカッターを使用します。(1:5, 000 反タウ; 反-リン-タウ 1:4, 000) の一次抗体ソリューションを準備し、この溶液中の 4 ° C でしみを一晩インキュベートします
    11. 一晩インキュベートした後 7 分しみ 4 回で洗うリン酸緩衝生理食塩水-トゥイーン-20 (pbst;) ソリューション
    12. (ヤギ抗うさぎまたは抗マウス IgG 1:5, 000)、関連する二次抗体ソリューションを準備し、4 回、7 分の 90 分間室温 pbst; 約 25 ° c. に洗浄のためのこのソリューションでしみをインキュベートします
    13. を開発、メーカーによると化学発光キットを使用してしみ ' 推奨値。透明なプラスチック製のラップを使用してしみをカバーします。イメージング システム関連ソフトウェアと化学発光の発光により画像を取得します

    3。脱燐酸化酵素アッセイ

    1. アルカリホスファターゼ バッファーのアルカリホスファターゼ (ステップ 2.5) からのセル lysates を扱う
      1. 両方を制御し、処理された試料準備 20 μ L のサンプルを含む 20 μ g 総蛋白。20 μ g 総蛋白、続いて 2 μ L アルカリホスファターゼ バッファーと 10 μ L アルカリホスファターゼを含むセル lysates のボリュームを追加します。20 μ L に蒸留水を追加します
    2. 1 h. 最終濃度 50 ミリメートル、エチレンジアミン四酢酸 (EDTA) を追加するか、最終濃度 10 mM バナジン ナトリウム (Na 3 VO 4) を追加することによって反作用を停止し、37 ° C でサンプルをインキュベートします。5 分 75 ° C で加熱することにより反応を停止することも
    3. ホスファターゼによるサンプルの培養が完了すると、前に脱燐酸化酵素フォスファターゼで処理したサンプルとの比較を追加せずに同じ濃度の試料を準備します
    4. 400 mM DTT を含む追加作りたての 4 X SDS ゲル読み込みバッファーします
    5. は、渦を使用してサンプル 5 分ミックス 100 ° C で熱ブロックのサンプルをインキュベートします。室温でクールな 〜 10-15 分
    6. SDS-PAGE によって 10% のポリアクリルアミドゲルを実行するための電気泳動システムを構築します
      1. 10 %polyacry の井戸あたりロード 10 μ g 蛋白質 (13 μ L サンプル)lamide ゲル。分子量の梯子をロードします
      2. サンプルをロードした後、電気泳動システムのプラスとマイナスの電極を一定の電圧を維持するために電源に接続します。最初は、スタッキングのゲルから解決のゲルに蛋白質のサンプルを移動する 20 分間 70 V で開始します。その後、125 V に電圧を高めるし、サンプルおよび蛋白質の梯子のゲルの端に達するまで約 70 120 分のためのゲルを実行します
      3. 電気泳動の終了後、湿式電気的ブロッティング法を用いた PVDF 膜にゲルを転送します。(動) 100 ~ 100 分の転送
      4. は、小さな分子量の梯子側に切り傷を作り、しみをマークします。しみを切断するため透明なプラスチック シートとシャープなカッターを使用します
    7. 、90 分の室温で 4 %bsa ブロック バッファー内膜をブロックします
    8. は、4 ° C で一次抗体溶液 (1:5, 000 反タウ) でしみを一晩インキュベートします。7 分 4 回 PBST でしみを洗うです
    9. は、関連する二次抗体溶液 (ヤギ抗マウス IgG 1:5, 000) を準備し、室温で 90 分のしみを孵化させなさい。7 分 4 回 PBST で洗うです
    10. を開発、メーカーによると化学発光キットを使用してしみ ' 推奨値。透明なプラスチック製のラップの内でしみをカバーします。イメージング システム関連ソフトウェアと化学発光の発光により画像を取得します

    4。微小管結合の試金

    1. 微小管結合の試金のため手順 2.1 2.6
    2. 準備 1 X 10 X PEM バッファーから (2 mL) PEM バッファーは、20 μ M (40 μ L) パクリタ キセルと 1 mM (20 μ L) GTP を追加して 4 ° C で保存。微小管 (MT) みる − 80 ° C のフリーザーと 大腸菌 タウ在庫から − 20 ° C のフリーザー
    3. の表 1 に従ってサンプルを準備します
    4. 100,000 × g で 60 分の 25 ° C で 30 分を超遠心機 37 ° C でインキュベートします
    5. 転送 120 μ L を含む上清中のタウをきれいにするを非連結し、チューブのラベルします
    6. 追加 120 μ L (上澄みと同じボリューム) 5 X のサンプル バッファー バインドされたタウを含むペレットにし、よく混ぜます。ラベルの付いた管をきれいにし、徹底的にミックスするソリューションを転送します
    7. タンパク質濃度の測定 (手順 2.6 参照).
      注: サンプル準備中、ペレットと上澄みの両方のサンプルを準備するためソリューション (ステップ 4.6) のボリュームを使用します
    8. 相当の蛋白質の集中のサンプルを準備し、作りたての 4 x DTT (400 mM) を含む SDS ゲル読み込みバッファーを追加します
      。 注意: サンプルで格納することができます − この段階で 20 ° C.
    9. 3.5 3.10、手順を繰り返します
    < td colspan ="2">
    サンプル に必要な微小管 主な蛋白質が必要な PEM GTP PTX
    1 HCT 116 コントロール (6.21 μ g/μ l) 2 μ l 9.66 μ l (60 μ g) 108.34 μ l
    2 HCT 116-クルクミン 10 μ M (4.81 μ g/μ l) 2 μ l 16.63 μ l (80 μ g) 101.37 μ
    3 HCT116-クルクミン 20 μ M (3.28 μ g/μ l) 2 μ l 30.49 μ l (100 μ g) 87.51 μ
    4 HCT 116 LiCl 25 mM (5.43 μ g/μ l) 2 μ l 18.42 μ l (100 μ g) 99.58 μ
    5 大腸菌 タウ 2 μ μ l 1タウ 352 117 μ l
    6 MT のみ 2 μ l X 118 μ l
    120 μ

    テーブル 1: 微小管結合の試金のための試料調製

    5 です。 ローカリゼーションとクルクミンと細胞の治療後トー式

    1. 70% エタノールを使用して観察をきれいにし、研究室のティッシュを使用してそれを乾燥。ラベル 6 ウェル培養プレートの各ウェルに単一 coverslip を挿入します。キャビネットの生物学的安全性のプレートを置き、少なくとも 3 h の紫外線のスイッチ
    2. サブカルチャー セル推奨培地の 10 の 5 細胞/ウェル x 2.5 で 6 ウェル プレートの関連性の高い井戸にそれらの種子と
    3. ~ 24 h 後細胞の形態学的変化をチェックする 10 X と 40 X の目標の両方を使用して、倒立顕微鏡を用いた細胞を調べます。必要な場合は、写真を記録します
    4. は、PBS を使用する 2 回細胞をすすいでください。暗闇の中で 37 ° C の定温器で 3.7% ホルムアルデヒドにセルを修正します
      。 注: 室温でホルムアルデヒドによる固定、よく働くも。ホルムアルデヒドを取り扱うときは、適切な個人用保護具を着用します
    5. は、PBS のセルを洗浄します。冷えたメタノールのセルを修復する − 20 ° C、15 分 Permeabilize セル PBS のセルを洗浄しているトリトン X-100 PBS で 10 分間氷の上で 0.1% と 3 %bsa にそれらをインキュベートし
    6. インキュベート ブロック バッファー内セル (0.1% と 3% BSA PBS 溶液トゥイーン 20) 室温で 1 時間
      。 注: 4 ° C で 2 時間インキュベーション作品も、あまりにもです
    7. 0.1% と 3 %bsa 一次抗体 (1: 200 で反タウ) ソリューションの準備 (例えば、0.4 mL バッファーに 2 μ L タウ 13 抗体) PBS でトゥイーン 20
    8. 、PVDF の小さな部分をカット膜部分に 6 ウェル プレートの各ウェル内で正しく収まるように水に浸す 5 分場所の各ウェルにカット PVDF
    9. 。 各ウェルに
    10. カットする一次抗体ソリューションの追加 60 μ L PVDF 作品。細胞は一次抗体溶液を触れることができるよう、coverslips を配置します。暗く、湿気の多い室内の 4 ° C で一晩インキュベートします。PBS で洗浄 4 回
    11. 準備 3 %bsa と 0.1% で二次抗体溶液 (フルオレセイン共役 594 抗マウス IgG 1: 400 で) PBS でトゥイーン 20
    12. ピース 6 ウェル プレートの各ウェル内に正しく収まるよう、各ウェルに PVDF カット 5 分位水に浸すように PVDF 膜の小片をカットします
    13. 6 ウェル プレートで PVDF 作品のそれぞれに二次抗体溶液を追加 80 μ l 添加します。セルは、二次抗体溶液を触れることができるよう、coverslip を配置します。4 回 2 h. PBS で洗浄のため室温で暗く、湿気の多い部屋でインキュベートします
    14. サンプル 4 でメディアをマウントをマウント '、6-diamidino-2-phenylindole (DAPI) と fix ガラス スライド coverslips
      1. 追加滴スライド ガラスの DAPI を取り付け中。各ウェルから、coverslips を外し、DAPI でメディアをマウントを含むスライド ガラスの上に置きます。鉱山機械染色の細胞を含む各カバーガラスの表面に触れていることを確認します。対応するスライド ガラスに頂中です
      2. 適用マニキュア各 coverslip シールし、それらを修正するすべての周りスライド ガラスに密閉。必要な場合は、2 回この手順を実行します
    15. 暗い部屋に室温で 1.5 h 間加温します
    16. 暗い部屋で coverslip のイマージョン オイルを用いた共焦点の顕微鏡を使用してスライドを確認します
  • Subscription Required. Please recommend JoVE to your librarian.

    Representative Results

    クルクミンの LiCl (図 1) 濃度の異なるセルを扱う後総タウとリン酸化タウの発現を調べた。クルクミンの濃度の異なる 3 つのセルの治療減少タウ発現;しかし、リン酸化タウ式低濃度クルクミンの投与により増加、クルクミン濃度が高いとセルを扱う時に減少しました。アンチ-リン-タウ (Ser396) は、リン酸化タウの検出に使われました。合計 tau のリン酸化タウのレベルを減らした LiCl (図 1) の 3 つの異なる濃度の細胞を処理。前の研究は、異なるがんの種類で、同じがんの種類の異なるサイトでタウの表現のレベルが異なることを示していた。大腸癌の以前のデータを示したそのタウ セルの 2 行で (HCT 116 および SW480) 大腸癌もリン酸化19が発現していた。5 μ M のクルクミンと細胞内リン酸化タウ レベルは未処理の細胞でより高かった。クルクミンの濃度が同じ細胞で総タウよりリン酸化タウのレベルが高かった。未処理の細胞と比較してリン酸化タウの濃度の減少を 10 μ M クルクミン細胞の治療が、リン酸化タウ式はまだ以上総タウ式レベル。30 μ M を下げたクルクミン リン酸化タウ式細胞の治療は同じ扱われる細胞レベルでの未処理細胞と総タウにリン酸化タウと比較。

    この原稿は、脱燐酸化酵素試金 (図 2) によって tau のリン酸化状態を評価するための簡単なプロトコルを設立しました。クルクミン治療後全体的な tau のリン酸化が大幅に変更していないと、特定のアミノ酸残基のリン酸化は重要な (図 1)。全体的にリン酸化タウが LiCl 未処理細胞と比較して細胞で停止しました。フォスファターゼで処理したサンプルを未処理試料がフォスファターゼで処理したサンプルよりもより多くの過リン酸化を確認する未処理のサンプルよりも速く electrophoresed。クルクミン処理細胞を示した、ほぼ同じ結果に、図 1に示すように、大腸癌細胞の治療でした tau のリン酸化が低下しないことを示します。フォスファターゼで処理した、未処理のサンプル細胞 LiCl のサンプルでほぼ同じ範囲で electrophoresed を示すこれらの細胞にその tau のリン酸化された (図 2) を削減します。ここでは、低濃度を示した治療高い部位特異的リン酸化抗体特定のリン酸化タウ (S396) によって明らかとしてリン酸化の全体的な状態を比較するクルクミン試料の高濃度 (20 μ M、30 μ M) が撮影されました。

    また、この演習では、正常に (図 3) のネガティブ コントロールとして肯定的な制御および MT のみとしてタウ 352 を使用が細胞サンプルの微小管結合の試金によって設立されました。クルクミンと LiCl の治療では、微小管結合活性が抑制され, 微小管結合の試金によって示されるように。この実験では、クルクミンの治療を示さなかったバインディング機能しますが、以前研究46,47, と同様の結合を阻害する微小管でサイト固有の tau のリン酸化を抑制する効果があったに対し濃度が高い。図 1、10 μ M クルクミン治療結果コントロールしますが、総タウより高い表現と比較してリン酸化タウの最小限の表現。しかし、クルクミン治療後大腸癌タウの微小管結合容量だけでなく、低濃度 LiCl 治療は、未処理のサンプルで減少しました。サイト固有の tau のリン酸化は、微小管結合と自己集計48 を効果します。一方、C 末端領域は、これらのプロパティを増加した MT 結合領域とともに両地域、約 70% のバインド プロパティを軽減する無秩序、プロリンが豊富な地域での tau のリン酸化阻害微小管結合のプロパティ、微小管48。他の部位特異的リン酸化タウのと同様に、いくつかの他の要因は、クルクミンや LiCl で治療大腸癌タウの微小管不安定の関与可能性があります。

    第一次および二次抗体の少量を使用して簡単なプロトコルには、クルクミンの投与 (図 4) 大腸癌細胞株におけるタウの局在化が有効になります。結果、タウがクルクミンの処置に続く核へ転流、見つけることその核のタウを報告初期の研究と同様、49 アルツハイマー病などの神経変性疾患における神経細胞の DNA 保護の重要なプレーヤー ,50

    Figure 1
    図 1: クルクミンや塩化リチウム治療大腸癌細胞のタウとリン酸化タウの式。制御の細胞から抽出したサンプルやクルクミン (A) と (B) LiCl の 3 つの異なる濃度の 24 時間処理した細胞 SDS ページで 10% ポリアクリルアミドゲルの解決、反タウやアンチ リン酸化タウ抗体プローブします。西部のしみ結果のデンシトメトリー分析が右側のパネルに表示されます。この図の拡大版を表示するのにはここをクリックしてください

    Figure 2
    図 2: 全体的な tau のリン酸化に未処理または特異的脱燐酸化酵素アッセイによって検出された細胞のサンプルを処理します。奇数レーン表示制御もレーン表示クルクミン投与または LiCl 処理サンプルの脱燐酸化酵素治療に対しエキスを携帯します。ホスファターゼ治療はタウの電気泳動移動度をリン酸化タウに含まれる未処理のサンプルよりも高速化。この図の拡大版を表示するのにはここをクリックしてください

    Figure 3
    図 3: 大腸癌細胞の微小管結合の試金によって検出されたタウの微小管結合します。コントロール HCT 116 セル サンプル、クルクミン投与または LiCl 処理セルのサンプルおよび大腸菌タウ微小管プロトコル セクション 4 で説明すると培養。上清 (S)、ペレット (P) 分数の等量られた反タウ抗体。陰性対照の車線 MT だけを含む MT に任意のバインドされた内因性タウ蛋白質が含まれていないことを確認する実行されました。下のパネルは、上清 (非連結タウ) とペレット (バインドされたタウ) 分数の比較を有効にする個々 のサンプルの西部のしみのデンシトメトリーの分析を示しています。この図の拡大版を表示するのにはここをクリックしてください

    Figure 4
    図 4: タウ蛋白質のローカリゼーション共焦点総務省検討分光。
    タウ末梢大腸癌細胞における核小体に局在します。左パネルは、中央のパネル表示核を DAPI で染色に対し反タウ モノクローナル抗体を使用して検出されたタウ ローカリゼーションを表示します。核にタウの転座を示す処理細胞の代表的な例も示します。扱われた細胞内のタウは原子核の内部もローカライズされたに対し、制御の細胞はタウ、核の内外を中心を示した。スケール バー = 20 μ m.この図の拡大版を表示するのにはここをクリックしてください

    Subscription Required. Please recommend JoVE to your librarian.

    Discussion

    この原稿は、総タウを検出するためさまざまな手続き型条件を確立し、クルクミンと LiCl 大腸癌細胞で tau のリン酸化します。Tau 蛋白質のサンプルの全体のリン酸化状態を評価するために脱燐酸化酵素試金は記述されていた。この試金は、任意のタンパク質のリン酸化状態を調べる可能性があります使用できます。

    この試金は非リン酸化状態より遅いタンパク質の動きをリン酸化の原則に基づいています。アルカリ性ホスファターゼ ・ アルカリ性ホスファターゼのバッファーは、このプロトコルで使用されます。セル lysates をアッセイ コンポーネントを追加したらサンプル培養特定の温度に特定の最適な期間にする必要があります。インキュベーション後、反応を停止する SDS サンプルバッファーでサンプルを煮沸する必要があります。以前は、さまざまな実験的プロトコルがタウの微小管への結合を評価するために使用されている可能性があります。ここで紹介する微小管結合の試金は実行しながら、清とペレットの分数を使用して品質保証を提供するために正と負の両方のコントロールを含む簡単です。MT だけ否定的な制御は、MT に任意のバインドされた内因性タウ蛋白質が含まれていないことを確認する使用されました。さらに、純粋な人間 tau-352、微小管結合タウは肯定的な制御として使用されました。非結合率 (上澄み) 超高速遠心分離から微小管結合率 (ペレット) を分離するには、使用された;この手順は、このような遠心、高価で広く利用されていないために、制限をすることができます。また、少量サンプルの使用すると、長いので、超遠心機ロータ用薄膜遠心チューブ アダプターが必要です。このようなチューブを再利用することが可能だ、使い捨てのクロス汚染を避けることをお勧めです。最後に、タウ ローカリゼーションのプロトコルの利点は第一次および二次抗体の少量のみが必要であります。固定、透過、および coverslips に付着性のセルのブロック後に、抗体の小さなドロップ 6 ウェル プレートの井戸の中に置かれた、PVDF の小片に堆積しました。抗体のセルにアクセスできるように、coverslips が保たれました。このプロトコルを使用して、使用される抗体の量を最小化できます。

    いくつかの注意事項は、信頼性と定量性を確保するため留めておかれる必要があります。まず、厳格な無菌技術は細胞培養の汚染を避けるために使用する必要があります、セルを抽出します。RIPA の完全な換散バッファーは新鮮な用意されてする必要があります。脱燐酸化酵素試金 3 分のサンプルを茹でてフォスファターゼで処理したと未処理のサンプルの孵化後すぐに SDS のページを開始することが重要です。タウ 352 は、小さい因数に分けと − 20 ° C のフリーザーから除去した後氷で保たれる、使用後すぐに冷凍庫に戻って入金する必要があります。氷; 72 h 以内に再使用する場合に −80 ° C、MT から削除された後株式が保管されるべきそれ以外の場合、室温でそれらを保ちます。1 x バッファーはたて GTP およびパクリタ キセルが追加される必要があるために、10 倍濃縮液として、PEM バッファーを準備必要があります。

    タウ関数は、そのリン酸化の程度によって規制されています。タウ タウは、通常大人脳タウ タウ-352、微小管結合の試金で肯定的な制御として使用されたようでは発生しません。ただし、タウ タウは、神経変性疾患で発生します。このプロトコルとそれ以降の結果は、ひと大腸癌細胞株にもアルツハイマー病の脳と同様にリン酸化タウが運ぶことを示します。高用量クルクミンと特に塩化リチウムによる治療は、tau のリン酸化を最小化できます。したがって、タウ タウに関して良い相関神経変性疾患、アルツハイマー病、大腸がんなどがあります、クルクミンまたは LiCl を大腸がんとアルツハイマー病を治療するために使用できます。タウの微小管結合を変更するエージェントは、動的に癌として研究したのでリン酸化タウとタウの微小管結合の勉強は大幅関連するいくつかの化学療法にも神経変性疾患だけでなく、最後に、治療51。ここに示すプロトコルことの発見と異なるタウオパチーと癌の治療に新しい治療薬の開発に役立つ可能性。

    Subscription Required. Please recommend JoVE to your librarian.

    Disclosures

    著者は、開示するものがあることを宣言します。

    Acknowledgments

    この研究を行ったプロジェクトの一部タイトルの 『 開発と価値の高い化粧品原料海洋微細藻類からの工業化 』、省の海洋と水産、韓国、によって資金を供給、学内グラント (2Z04930) によって支えられました。天然物の KIST 陵所。

    Materials

    Name Company Catalog Number Comments
    HCT 116 cell ATCC CCL-247
    MEM (EBSS) Hyclone SH30024.01
    Fetal Bovine Serum (FBS) ThermoFisher (Gibco) 16000044 Store at -20 °C
    penicillin-streptomycin Hyclone SV30010
    Trypsin-EDTA solution WelGene LS 015-01
    100 mm dish Corning 430161
    6 well plate Corning Coster 3516
    Anti-Tau 13 antibody abcam ab19030
    Dithiothreitol (DTT) Roche 10 708 984 001 Storage Temperature 2–8 °C
    Microlitre Centrifuges Hettich Zentrifugen MIKRO 200 R
    Paclitaxel Sigma-Aldrich T1912 Storage Temperature 2–8 °C
    Curcumin Sigma-Aldrich (Fluka) 78246 Storage Temperature 2–8 °C
    Microtubules (MT) Cytoskeleton MT001 Store at 4 °C (desiccated)
    Mounting Medium with DAPI Vector Laboratories H-1200 Store at 4 °C in the dark
    Sodium hydroxide Sigma 72068
    Magnesium Chloride Sigma-Aldrich M2670
    GTP Sigma-Aldrich G8877 Store at -20 °C
    DPBS WelGene LB 001-02
    Sonic Dismembrator Fisher Scientific Model 500
    Ultracentrifuge Beckman Coulter Optima L-100 XP
    PIPES Sigma P1851
    Bovine serum Albumin (BSA) Sigma A7906
    Molecular Imager Bio-Rad ChemiDoc XRS+ Store at 4 °C
    Protein assay dye reagent Bio-Rad 500-0006
    α-tubulin (11H10) Rabbit mAb Cell signalling 2125
    GAPDH (14C10) Rabbit mAb Cell signalling 2118
    Anti-Tau (phospho S396) antibody abcam ab109390
    EGTA Sigma E3889 Store at room temperature
    FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific EF0651 Store at -20 °C
    PMSF Sigma P7626 Store at room temperature
    Phosphatase Inhibitor Cocktail Cell Signalling 5870 Store at 4 °C
    Protease Inhibitor Cocktail Cell Signalling 5871 Store at 4 °C
    RIPA Buffer Sigma R 0278 Storage Temperature 2–8 °C
    Tau-352 human Sigma T 9950 Store at -20 °C
    Triton X-100  Sigma-Aldrich X - 100 Store at around 25 °C
    PVDF membrane Bio-Rad 162-0177
    Goat anti-mouse IgG Secondary Antibody ThermoFisher A-11005 Store at 4 °C in the dark
    Confocal Microscopy Leica Microsystem Leica TCS SP5
    Sodium Dodecyl Sulfate (SDS) Affymetrix 75819
    Protein Assay Bio-Rad 500-0006 Store at 4 °C

    DOWNLOAD MATERIALS LIST

    References

    1. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., Kirschner, M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 72, 1858-1862 (1975).
    2. Cambiazo, V., Gonzalez, M., Maccioni, R. B. DMAP-85: a tau-like protein from Drosophila melanogaster larvae. J Neurochem. 64, 1288-1297 (1995).
    3. Goedert, M., et al. PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J Cell Sci. 109 (Pt 11), 2661-2672 (1996).
    4. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 3, 519-526 (1989).
    5. Cleveland, D. W., Hwo, S. Y., Kirschner, M. W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol. 116, 207-225 (1977).
    6. Fellous, A., Francon, J., Lennon, A. M., Nunez, J. Microtubule assembly in vitro. Purification of assembly-promoting factors. Eur J Biochem. 78, 167-174 (1977).
    7. Witman, G. B., Cleveland, D. W., Weingarten, M. D., Kirschner, M. W. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci U S A. 73, 4070-4074 (1976).
    8. Dixit, R., Ross, J. L., Goldman, Y. E., Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science. 319, 1086-1089 (2008).
    9. Harada, A., et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 369, 488-491 (1994).
    10. Caceres, A., Kosik, K. S. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature. 343, 461-463 (1990).
    11. Binder, L. I., Frankfurter, A., Rebhun, L. I. The distribution of tau in the mammalian central nervous system. J Cell Biol. 101, 1371-1378 (1985).
    12. Gu, Y. J., Oyama, F., Ihara, Y. tau is widely expressed in rat tissues. J Neurochem. 67, 1235-1244 (1996).
    13. Kenner, L., et al. Expression of three- and four-repeat tau isoforms in mouse liver. Hepatology. 20, 1086-1089 (1994).
    14. Souter, S., Lee, G. Microtubule-associated protein tau in human prostate cancer cells: isoforms, phosphorylation, and interactions. J Cell Biochem. 108, 555-564 (2009).
    15. Sangrajrang, S., et al. Estramustine resistance correlates with tau over-expression in human prostatic carcinoma cells. Int J Cancer. 77, 626-631 (1998).
    16. Rouzier, R., et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A. 102, 8315-8320 (2005).
    17. Mimori, K., et al. Reduced tau expression in gastric cancer can identify candidates for successful paclitaxel treatment. Brit J Cancer. 94, 1894-1897 (2006).
    18. Jimeno, A., et al. Development of two novel benzoylphenylurea sulfur analogues and evidence that the microtubule-associated protein tau is predictive of their activity in pancreatic cancer. Mol Cancer Ther. 6, 1509-1516 (2007).
    19. Huda, M. N., Kim, D. H., Erdene-Ochir, E., Kim, Y. S., Pan, C. H. Expression, phosphorylation, localization, and microtubule binding of tau in colorectal cell lines. Appl Biol Chem. 59, 807-812 (2016).
    20. Askanas, V., Engel, W. K., Bilak, M., Alvarez, R. B., Selkoe, D. J. Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau. The American journal of pathology. 144, 177-187 (1994).
    21. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., Hof, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 33, 95-130 (2000).
    22. Hanger, D. P., Anderton, B. H., Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 15, 112-119 (2009).
    23. Sergeant, N., et al. Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics. 5, 207-224 (2008).
    24. Fath, T., Eidenmuller, J., Brandt, R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci. 22, 9733-9741 (2002).
    25. Kolarova, M., Garcia-Sierra, F., Bartos, A., Ricny, J., Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis. 2012, 731526 (2012).
    26. Kosik, K. S., Joachim, C. L., Selkoe, D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 83, 4044-4048 (1986).
    27. Wood, J. G., Mirra, S. S., Pollock, N. J., Binder, L. I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci U S A. 83, 4040-4043 (1986).
    28. American Cancer Society. Colorectal Cancer Facts, Figures 2011-2013. , Available from: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-028312.pdf (2016).
    29. Jemal, A., et al. Cancer statistics, 2003. CA Cancer J Clin. 53, 5-26 (2003).
    30. Patel, V. B., Misra, S., Patel, B. B., Majumdar, A. P. Colorectal cancer: chemopreventive role of curcumin and resveratrol. Nutr Cancer. 62, 958-967 (2010).
    31. Lim, G. P., et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 21, 8370-8377 (2001).
    32. Venkatesan, N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol. 124, 425-427 (1998).
    33. Srinivasan, M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J Med Sci. 26, 269-270 (1972).
    34. Deodhar, S. D., Sethi, R., Srimal, R. C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res. 71, 632-634 (1980).
    35. Rao, C. V., Rivenson, A., Simi, B., Reddy, B. S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 55, 259-266 (1995).
    36. Araujo, C. C., Leon, L. L. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz. 96, 723-728 (2001).
    37. Lim, T. G., et al. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev Res (Phila). 7, 466-474 (2014).
    38. Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., Cummings, J. L. A potential role of the curry spice curcumin in Alzheimer's disease. Curr Alzheimer Res. 2, 131-136 (2005).
    39. Li, H., et al. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3beta/NF-kappaB signaling pathway. Oxid Med Cell Longev. , 241864 (2014).
    40. Forlenza, O. V., De-Paula, V. J., Diniz, B. S. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci. 5, 443-450 (2014).
    41. Noble, W., et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 102, 6990-6995 (2005).
    42. Perez, M., Hernandez, F., Lim, F., Diaz-Nido, J., Avila, J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis. 5, 301-308 (2003).
    43. Engel, T., Goni-Oliver, P., Lucas, J. J., Avila, J., Hernandez, F. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem. 99, 1445-1455 (2006).
    44. Caccamo, A., Oddo, S., Tran, L. X., LaFerla, F. M. Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol. 170, 1669-1675 (2007).
    45. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254 (1976).
    46. Gupta, K. K., Bharne, S. S., Rathinasamy, K., Naik, N. R., Panda, D. Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding. FEBS J. 273, 5320-5332 (2006).
    47. Lee, J. W., Park, S., Kim, S. Y., Um, S. H., Moon, E. Y. Curcumin hampers the antitumor effect of vinblastine via the inhibition of microtubule dynamics and mitochondrial membrane potential in HeLa cervical cancer cells. Phytomedicine. 23, 705-713 (2016).
    48. Liu, F., et al. Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci. 26, 3429-3436 (2007).
    49. Sultan, A., et al. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem. 286, 4566-4575 (2011).
    50. Bukar Maina, M., Al-Hilaly, Y. K., Serpell, L. C. Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules. 6, 9 (2016).
    51. Dumontet, C., Jordan, M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 9, 790-803 (2010).

    Tags

    生化学、問題 128、アルツハイマー病、タウオパチー、リン酸化、微小管、クルクミン、塩化リチウム、共焦点顕微鏡
    リン酸化と大腸癌細胞におけるタウ蛋白の局在と微小管結合の試金
    Play Video
    PDF DOI DOWNLOAD MATERIALS LIST

    Cite this Article

    Huda, M. N., Erdene-Ochir, E., Pan,More

    Huda, M. N., Erdene-Ochir, E., Pan, C. H. Assay for Phosphorylation and Microtubule Binding Along with Localization of Tau Protein in Colorectal Cancer Cells. J. Vis. Exp. (128), e55932, doi:10.3791/55932 (2017).

    Less
    Copy Citation Download Citation Reprints and Permissions
    View Video

    Get cutting-edge science videos from JoVE sent straight to your inbox every month.

    Waiting X
    Simple Hit Counter