Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Genetics

昆虫细胞 (sf9) 外源基因在蛋白质功能检测中的瞬态表达

Published: February 22, 2018 doi: 10.3791/56693

Summary

本协议描述了一种热休克诱导蛋白表达系统 (pDHsp/V5-His/sf9 细胞系统), 可用于表达外来蛋白或评价潜在外来蛋白的抗凋亡活性及其截断的氨基酸昆虫细胞中的酸。

Abstract

瞬态基因表达系统是在杆状病毒体外细胞培养系统中进行蛋白质功能分析的重要技术之一。该系统是在瞬态表达质粒中杆状病毒启动子控制下表达国外基因的一种方法。此外, 该系统可应用于杆状病毒本身或外来蛋白质的功能检测。以Orgyia pseudotsugata multicapsid nucleopolyhedrovirus (OpMNPV) 的直接早期基因启动子为基础, 建立了最广泛、最商业化的瞬时基因表达系统。然而, 在昆虫细胞中发现外来基因的表达水平较低。因此, 构建了一种用于改善蛋白质表达的瞬态基因表达系统。在该系统中, 构建了重组质粒, 以包含在果蝇热休克 70 (Dhsp70) 启动子控制下的目标序列。本协议介绍了这种基于热休克的 pDHsp/V5-His (V5 表位与6组氨酸)/斜纹 frugiperda细胞 (sf9 细胞) 系统的应用;该系统不仅用于基因表达, 而且可用于评价昆虫细胞中候选蛋白的抗凋亡活性。此外, 该系统可以转染一个重组质粒或联合转染两个潜在的功能拮抗重组粒的昆虫细胞。该协议证明了该系统的有效性, 并提供了该技术的实际应用实例。

Introduction

两种蛋白表达系统通常用于生产蛋白质: 原核生物蛋白表达系统 (大肠杆菌基因表达系统) 和真核细胞蛋白表达系统.一种流行的真核细胞蛋白表达系统是杆状病毒表达载体系统 (BEVS)1。杆状首次被用作全球农业和森林害虫的生物控制剂。在过去的几十年中, 杆状被开发为蛋白质表达载体的生物技术工具。杆状的基因组由双链循环 DNA 和封装 nucleocapsids2组成。到目前为止, 已有七十八多个杆状病毒分离序列3。根据寄主昆虫细胞杆状病毒基因表达的时间级联, 基因转录可分为四个颞叶栅, 包括即刻早、延迟早、晚期和非常晚的基因 4.

BEVSs 被指定为非常晚基因促进者 (, 多面体或 p10 启动子) 被用来驱动目标基因, 而重组杆状病毒是由同源重组产生的。重组杆状病毒在昆虫细胞中的外蛋白表达与转化后修饰的哺乳动物蛋白相似 (适合于糖蛋白的生成)。因此, 杆状病毒已被广泛使用5,6,7。然而, 一个限制是在昆虫细胞中存在着不同的 n-糖基化通路7

因此, 建立了一种新的杆状病毒表达系统--瞬态基因表达系统。该系统在昆虫细胞中杆状病毒直接早期促进剂 (ie-1 启动子) 驱动下表达国外基因.通过使用该系统, 可以在ie-1启动子的控制下立即表达目标蛋白, 同时修改昆虫细胞中的 n-糖基化通路, 从而得到更好的 n-链寡糖7。此外, 杆状病毒直接早期基因由宿主细胞 RNA 聚合酶 II 转录, 不需要任何病毒因子激活 4.因此, 在短时间内, 外来蛋白可以在昆虫细胞中表达。目前, 瞬态基因表达系统是在杆状病毒体外细胞培养系统中进行蛋白质功能测定的重要技术之一。该系统可用于分析杆状病毒或外来蛋白质的功能。一个商业上可用的瞬态基因表达系统是基于直接早期基因 (IE) 促进者的Orgyia pseudotsugata multicapsid nucleopolyhedrovirus (OpMNPV) (OpIE2 和 OpIE1)。

然而, 当奥佩启动子的瞬态基因表达系统使用8,9,10时, 昆虫细胞外基因的表达水平仍然是一个问题。因此, 根据果蝇热休克蛋白 70 (hsp70) 基因8,9的启动子, 构建了另一个瞬时基因表达系统。在昆虫细胞的热休克诱导下, hsp70 的启动子比杆状病毒 IE 启动子更有效 10.在该系统中, 目标基因在果蝇热休克 70 (Dhsp70) 启动子的驱动下表达。利用 PCR 克隆方法可以很容易地将外来基因复制到瞬态基因表达质粒中。同时, 通过热休克诱导, 可以对基因表达的时机进行控制。

在本报告中, 我们遵循的方法和表达三不同截断的杆状病毒基因 (细胞凋亡3, iap3 从 蛾 MNPV) 使用热休克为基础的瞬态蛋白表达系统和进一步应用这些表达蛋白的抗凋亡活性分析。该系统既可以快速表达国外蛋白, 又可进一步应用于 sf9 细胞蛋白质抗凋亡活性的评价, 同时也具有应用于其他蛋白质活性测定的潜力。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 筹备工作

  1. 昆虫细胞培养
    1. 准备50毫升细胞培养基。为此, 添加500µL 抗生素 (两性霉素 B = 0.25 µg/毫升, 青霉素 = 100 单位/毫升, 链霉素 = 100 µg/毫升) 和5毫升的热灭活胎牛血清在无血清细胞培养培养基 (不含血清或抗生素)。
      注意:使用前, 在水浴中将胎牛血清加热65摄氏度, 30 分钟。
    2. 维护斜纹 frugiperda (鳞翅目: 夜蛾科), sf9 昆虫细胞。通过摇动烧瓶并在光镜下检查, 从25厘米2细胞培养瓶中分离出约80% 的细胞。然后, 将细胞悬浮液的50% 转移到新的25厘米2细胞培养瓶中, 并允许细胞在室温下附着15分钟。用5毫升新鲜细胞培养培养基取代培养基, 在28摄氏度的孵化器中生长。通道细胞每2到3天取决于细胞的生长。
  2. 细胞转染用质粒的制备
    1. 将目标 DNA 片段 (例如, 毒蛾MNPV (LyxyMNPV) iap3基因及其删除构造) 插入 pDHsp/V5-His, 方法是基于 PCR 的克隆法11。利用 pcr 主配比 (2X) 和 pDhsp-F2/Op-IE2R 底漆集, 对转化后菌落的生长进行了菌落 pcr 检查。通过商业测序服务确认质粒序列。
      注意:表 1列出了用于 PCR 的引物和相应的构造。
    2. 培养单序列细菌菌落, 其中包含上述质粒结构 (步骤 1.2) 在200毫升 LB 培养基含有选定的抗生素 (50 µg/毫升), 分别。
    3. 根据制造商的说明12, 从培养的大肠杆菌中提取质粒。
  3. 用1.5 毫升细胞培养培养基和8.5 毫升无血清细胞培养培养基制备电镀培养基。
  4. 放线菌 D (ActD) 细胞培养培养基, 加入1.5 µL ActD (1 毫克/毫升) 到10毫升细胞培养培养基 (最终浓度 = 150 ng/毫升)。存储在4摄氏度。

2. 蛋白质瞬时表达

  1. 细胞播种
    1. 通过摇动培养瓶来收割 sf9 细胞, 将细胞悬浮液倒进50毫升管, 并通过 P10 吸管将10µL 转移到 hemocytometer。在光显微镜下计数细胞数。
    2. 板材 3 x 105 sf9 细胞入每个井在24井板材为15分钟在室温下。用0.5 毫升电镀介质替换介质。
  2. 质粒的转染
    1. 稀释细胞转染试剂: 稀释8µL 细胞转染试剂100µL 无血清细胞培养培养基, 并用涡流混合1秒。
    2. 添加2µg 质粒 DNA (pDHsp70-Ac-P35/V5-His 或 pDHsp70-Ly-IAP3/V5-His 或 pDHsp70-Ly-IAP3-BIR/V5-His 或 pDHsp70-Ly-IAP3-RING/V5-His) 到100µL 的无血清细胞培养培养基和混合涡流 1 s (图 2)。
    3. 将稀释质粒 DNA 与稀释细胞转染试剂 (210 µL) 相结合, 涡流 1 s. 室温孵育30分钟。
    4. 添加210µL DNA 转染试剂混合物滴入细胞由 P1000 吸管。孵育28°c 为5小时。
    5. 用 P1000 吸管取代电镀培养基, 用0.5 毫升的细胞培养培养基。用胶带封住24井板, 在28摄氏度孵化细胞16小时。
  3. 热休克转染细胞: 把盘子放在42摄氏度的水浴中 (漂浮在水面上)。热30分钟, 并返回24井板28°c 孵化器。
  4. 蛋白质表达的检测
    1. 1小时或5小时热休克后, 用0.5 毫升 1x PBS 缓冲液冲洗细胞, 简要三次。
      注: 将1毫升 10x pbs 缓冲器添加到9毫升灭菌 ddH2O, 将 10x pbs 缓冲器稀释为 1x pbs 缓冲器。
    2. 溶解细胞与40µL 的 1x SDS 加载染料吹打上下。
      注: 通过混合30µL 1x PBS 缓冲器和10µL 4x sds 样品缓冲器稀释 4x SDS 加载染料。
    3. 在热块中将蛋白质样品加热98摄氏度, 10 分钟, 向下旋转1分钟, 然后放入冰上进行印迹测定。
    4. 杂交印迹法
      按照 Eslami 和 Lujan13中的西方印迹检测程序进行操作。运行 SDS 页凝胶14: 一凝胶受考马斯蓝染色 (加载控制, 以检查每个井中的蛋白质样品数量是否相等) 和其他受西方印迹检测, 根据 Eslami 和 Lujan13.
    5. 检测 V5-tagged 融合蛋白与兔 anti-V5 抗体 (5 毫克/毫升) (1:5000 稀释 TBST 缓冲工作浓度1µg/毫升) 和山羊抗兔 IgG-辣根过氧化物酶 (HRP) 共轭 (0.8 毫克/毫升) (1:10000 稀释 TBST 缓冲工作浓度0.08 µg/毫升)。
      注意:将聚丙烯酰胺的百分比调整为 17.5%, 当蛋白质分子量为 < 17 kDa 时。

3. 抗凋亡活性测定

  1. 基因诱导细胞凋亡: 重复上述过程从2.1 到2.3。共染1µg 的 pDHsp/D-弹性蛋白/旗-他质粒 dna (含凋亡诱导基因) 与1µg 的质粒 dna [pDHsp70/V5-His 向量 (阴性对照), pDHsp70-Ac-P35/V5-His (阳性对照), pDHsp70-Ly-IAP3/V5-His, pDHsp70-Ly-IAP3-BIR/V5-His或 pDHsp70-Ly-IAP3-RING/V5-His, 分别.]。在5小时后热休克治疗, 进行细胞活力检测 (图 2)。
  2. 化学诱导细胞凋亡: 重复上述步骤从2.1 到2.3。在步骤2.1.2 中, 板 1 x 106 sf9 单元格放入6井板中的每个井中。染4µg 质粒 DNA [pDHsp70/V5-His 矢量 (阴性对照)、pDHsp70-Ac-P35/V5-His (阳性对照)、pDHsp70-Ly-IAP3/V5-His、pDHsp70-Ly-IAP3-BIR/V5-His 或 pDHsp70-Ly-IAP3-RING/V5-His 分别.]。在5小时后热休克, 治疗 sf9 细胞2mL 的 ActD 细胞培养培养基16小时, 并进行细胞活力检测 (图 2)。
    注意:6井板一井盖的最小容积为1毫升。
  3. 执行上述抗凋亡活性试验, 包括3.1 和 3.2 triplicates。

4. 细胞活性测定

  1. 通过添加1毫升 1x PBS 缓冲液, 1 分钟3次, 冲洗处理过的细胞。并用重悬细胞由吹打1毫升 1x PBS 缓冲器包含0.04% 台盼蓝和染色3分钟室温。将细胞悬浮液转移到1.5 毫升微细。
    注意:通过混合9毫升 1x PBS 缓冲器和1毫升0.4% 台盼蓝溶液稀释0.4% 台盼蓝溶液。
  2. 将10µL 台盼蓝染色细胞悬浮液转移到 hemocytometer, 用 P10 吸管, 并在光显微镜下计数存活完好的细胞。
  3. 统计分析
    1. 计算所记录的数据, 并以此作为 S.D. 所有计数的方法。
    2. 使用学生的双尾 t 测试与 Microsoft Excel 一起分析数据。将统计重要数据定义为P值 < 0.05。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

基于热休克的 sf9斜纹夜蛾pDHsp/V5-His/细胞 (frugiperda 细胞) 系统, LyxyMNPV 中 Ly-IAP3 的全长和其他两个截断 (和环域) 抗原在 sf9 细胞中。pDHsp/V5-His 含有一个果蝇热休克蛋白启动子, 它通过使用细胞转录因子和翻译系统 (图 1)8 , 在42摄氏度的温度下驱动下游基因表达.,9,11。整个技术流程图显示在图 2中。在1小时或5小时热休克后, 细胞裂解蛋白样缓冲, 并接受西方印迹检测, 以确认蛋白表达。结果表明, 全长蛋白、AC-P35、Ly-IAP3、Ly-IAP3-BIR 和 Ly-IAP3-RING 均可在1小时或5小时后热休克的转染细胞中检测到。此外, 在5小时后热休克中发现了蛋白质积累 (图 3)。因此, 根据数据, 蛋白质功能检测是在最大蛋白表达时间点 (5 小时后热休克) 进行的。

基因诱导的细胞凋亡和化学诱导的细胞凋亡可以适应这个系统来评估抗凋亡的活动 (图 2)。对于基因诱导的细胞凋亡, 两种构造 (凋亡诱导因子和靶基因质粒结构) 被共转染成 sf9 细胞, 然后热休克 activite 基因表达。同时, 采用热休克瞬态表达系统, 表达了抗凋亡蛋白 Ac-P35 (阳性对照) 和凋亡诱导蛋白 (d-弹性蛋白酶)。

热休克后, 两种基因开始表达并转化为蛋白质。阳性对照 (Ac-P35/D-RPR) 与载体/d-弹性细胞相比, 具有较高的抗凋亡活性, 达到了80% 的生存率。从其他构造的细胞活力结果, 研究人员可以比较抗凋亡活动彼此或积极控制 (图 4A)。对于化学诱导的细胞凋亡, 只有一个构造被转染成 sf9 细胞。在5小时后热休克后, 添加了化学物质 (ActD), 在 16 h (图 2) 后测量细胞的活力。与正控制 (AC-P35) 或负控制 (矢量) 相比, 每个构造显示了对抗凋亡活动的各种影响 (图 4B)。

Figure 1
图 1: 基于 pDHsp/V5-His 向量的ly-iap3相对质粒结构的图和核苷酸序列。起始密码子 (ATG) 以粗体显示。下划线表示限制酶切割点 (后 III 在红色颜色;BamHI以蓝色为颜色);绿色序列表示 Dhsp70 启动子区域。请单击此处查看此图的较大版本.

Figure 2
图 2: 热休克诱导蛋白表达系统 (pDHsp/V5-His/sf9 细胞系统) 的流程图.以基因诱导细胞凋亡和化学诱导细胞凋亡治疗为起始步骤 (与凋亡诱导基因质粒的共转染) 或热休克 (化学诱导细胞凋亡) 后一步, 分别用于抗凋亡试验。修改后的图形和图例已通过 Springer11的权限复制。请单击此处查看此图的较大版本.

Figure 3
图 3: 使用热休克诱导蛋白表达系统 (pDHsp/V5-His/sf9 细胞系统) AC-P35、Ly-IAP3、Ly-IAP3-BIR 和 Ly-IAP3-RING 的过度表达.在1小时或5小时后的热休克, 细胞裂解物的收获, 并接受了西方印迹化验和 SDS/页。(A) 以α V5 抗体和 (B) 为荷载控制的考马斯蓝染色的西方印迹检测。请单击此处查看此图的较大版本.

Figure 4
图 4: 对d-弹性细胞或放线菌 D 诱导的凋亡的可行性测定。() sf9 细胞以 pDHsp70/V5-His 矢量 (仅限矢量) 转染, 并与 pDHsp70/V5-His 向量、pDHsp70/Ac-P35/V5-His、pDHsp70/Ly-IAP3/V5-His、pDHsp70/Ly-IAP3-BIR/V5-His、pDHsp70/一起转染 pDHsp70/drpr/FLAG-HisLy-IAP3-RING/V5-His, 分别。向量与 P35、向量与 Ly-IAP3 之间的差异具有统计学意义 (t检验;P < 0.05)。(B) sf9 细胞以 pDHsp70/V5-His 向量或 pDHsp70/Ac-P35/V5-His、pDHsp70/Ly-IAP3/V5-His、pDHsp70/Ly-IAP3-BIR/V5-His、pDHsp70/Ly-IAP3-RING/V5-His 分别转染, 热休克后5小时, 添加 ActD, 16 小时后,测定细胞活力。向量与 P35 的差异具有统计学意义 (t检验;P < 0.05)。修改后的图形和图例已通过 Springer11的权限复制。请单击此处查看此图的较大版本.

名称 序列
pDHsp-IAP3-HindIII-F 5´-GGAAGCTTACCATGGACGACGAACGACGCAG 3´
pDHsp-IAP3-BamHI-R 5´-GCGGATCCCGGATGTAGGAACACCTTGA 3´
iap3-BIR-BamHI-r 5´-CGGGATCCCGGCAGATCGCCGCCGCGGA 3´
iap3-RING-HindIII-F 5´-GGAAGCTTACCGAGCTCATAAAAAGGCCCGT-3´
pDhsp70-F2 5´-CTGCAACTACTGAAATCAACCAAG-3´
Op-IE2R 5´-GACAATACAAACTAAGATTTAGTCAG-3´

表 1: 用于基于 PCR 的克隆方法的底漆集. *下划线的脱氧核糖核酸基地对表明了制约酵素站点。修改后的底漆列表是通过 Springer11的许可复制的。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

基于热休克的 pDHsp/V5-His/sf9 细胞系统的概念在1994年的8中首先被克莱克et描述。杆状病毒基因启动子 (IE1) 和 果蝇hsp70 的比较表明 hsp70 在蚊子细胞10中的效率更高.此外, 由于热休克诱导, 在热休克治疗后, 可以精确控制蛋白质表达的时间。该系统随后应用于虾和 nucleopolyhedrovirus (NPV) 蛋白的蛋白质功能测定9,11。在本议定书中, 共使用了6种质粒结构: 三 (pDHsp/V5-His、pDHsp/Ac-p35/V5-His 和 pDHsp/D-弹性/旗-他) 是由宏列伊的9和其他三建筑 (pDHsp-iap3/V5-His、pDHsp-iap3-BIR/V5-His、和 pDHsp-iap3-RING/V5-His) 是由泥et al, 201611构建的。这似乎是昆虫细胞的启动子比杆状病毒基因促进者更有效的工作。但是, 在操作本协议时, 有几个要点需要考虑。在质粒转染前, 检查 DNA 序列的插入对基因表达有重要意义;因此, 它应该与 V5 表位融合, 形成一个 V5-tagged 融合蛋白在目标序列的末尾。此外, 不同的融合标记 (, 标记表位) 也可以在基于 pDHsp 的体外蛋白质结合检测的向量中进行设计。此扩展过程将有助于进一步研究蛋白质-蛋白质相互作用9。因此, 商业 V5 多克隆抗体可用于蛋白质的检测。实验前应检测不同昆虫细胞的转染率。转染率较低可能导致无法检测到蛋白质表达;因此, 一个含有合适报告基因 (, 绿色荧光基因) 的 pDHsp 载体可以转化为昆虫细胞, 以评估其转化效率。

这种热休克表达平台的主要局限性是蛋白质表达水平。在某些情况下, 发现低蛋白表达水平。根据一项试验研究, 当更多的质粒 DNA 转染成 sf9 细胞时, 没有明显的剂量依赖性效应 (未显示数据)。因此, 这种效应可能是由泛素蛋白酶体通路 (UPP) 或其他未知机制11引起的。研究人员应该在蛋白酶体抑制剂 (, MG-132) 存在的情况下检查蛋白质表达, 以澄清和 recolve 此问题11。另一个限制是无法实现与重组病毒相关的蛋白质的可持续生产。因此, 蛋白质表达的稳定性和数量也是对该系统的关注。因此, 蛋白质生产的时间过程也应在功能测试前用西方印迹测定法进行检验。在该协议中, 我们比较了两个时间点 (1 和5小时的热休克), 并观察到目标蛋白生产的积累从1小时到5小时。为了确定蛋白质功能测定的最佳时机条件, 建议增加时间点。

在蛋白质功能检测中, 采用热休克瞬态表达系统, 表达了抗凋亡蛋白 Ac-P35 (阳性对照) 和凋亡诱导蛋白 (d-弹性蛋白酶)。这两种蛋白质被描述为功能拮抗剂9,11,15。因此, 向量/D-弹性环和 Ac-P35/D-RPR 可以作为一个负控制和积极控制, 分别。利用这种比较, 可以确定靶蛋白的抗凋亡活性。

该协议可为快速表达国外蛋白质提供平台, 也可进一步应用于昆虫细胞蛋白质抗凋亡活性的评价。一旦研究人员获得了蛋白质功能的初步结果, 该系统可用于进一步的研究。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者声明他们没有竞争的财政利益。

Acknowledgments

感谢国立台湾海洋大学海洋生物学研究所宏博士提供3种质粒结构。这项研究得到了科学和技术部 (大多数) 的赠款 106-2311-B-197-001 的支持。

Materials

Name Company Catalog Number Comments
Antibiotic-Antimycotic, 100X Gibco 15240-062 for insect cell culture
Certified Foetal Bovine Serum Bioind 04-001-1A
Sf-900 II SFM Thermo Fisher 10902096 serum-free cell culture medium
Sf9 cells ATCC CRL-1711
25cm2 cell culture flask Nunc, Thermo Fisher 156340
Inverted light microscopy WHITED WHITED WI-400
RBC HIT Competent Cell Bioman RH618-J80 Escherichia coli (DH5α)
L.B. Broth (Miller) Bioman LBL407
Agar, Bacteriological Grade Bioman AGR001
Zeocin Invitrogen ant-zn-1 selection antibiotic
PCR Master Mix (2X) ThermoFisher K0171
Geneaid Midi Plasmid Kit (Endotoxin Free) Geneaid PIE25
Actinomycin D SIGMA A9415
Corning 50 mL centrifuge tubes SIGMA CLS430829-500EA 50 mL tubes
Hemocytometer Gizmo Supply Co B-CNT-SLDE-V2
24-Well Multidish Nunc, Thermo Fisher 142475 24-well plate
Cellfectin II Reagent Thermo Fisher 10362100 cell transfectin reagent
PBS-Phosphate-Buffered Saline (10X) pH 7.4 Thermo Fisher AM9624
4×SDS Loading Dye Bioman P1001
Immobilon-P (PVDF Blotting Membranes) Merck Milipore IPVH00010 PVDF membranes
Mini Trans-Blot Cell system BIO-RED 1703930 Blotting device
Ponceau S solution SIGMA 6226-79-5
Anti-V5 SIGMA V8137 rabbit anti-V5 antibody
Goat anti-rabbit IgG-horseradish peroxidase (HRP) Jackson 111-035-003
Tween 20 Merck 817072
6-Well Multidish Nunc, Thermo Fisher 145380
0.4 % trypan blue solution AMRESCO K940-100ML
P10 pipetman Gilson F144802
P1000 pipetman Gilson F123602
Tape Symbio PPS7 24 well tape ( 19 mm×36 M)

DOWNLOAD MATERIALS LIST

References

  1. Miller, L. K. Baculoviruses as gene expression vectors. Annual Reviews in Microbiology. 42 (1), 177-199 (1988).
  2. Theilmann, D. A., et al. Family Baculoviridae. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., Ball, L. A. , Springer Press. New York. 1129-1185 (2005).
  3. Nai, Y. S., Huang, Y. F., Chen, T. H., Chiu, K. P., Wang, C. H. Determination of nucleopolyhedrovirus' taxonomic position. Biological Control of Pest and Vector Insects. Shields, V. D. C. , InTech Press. Rijeka. 169-200 (2017).
  4. Friesen, P. D. Regulation of baculovirus early gene expression. The Baculoviruses. Miller, L. K. , Plenum Press. New York. 141-170 (1997).
  5. Smith, G. E., Summers, M., Fraser, M. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3 (12), 2156-2165 (1983).
  6. Luckow, V. A., Summers, M. D. Trends in the development of baculovirus expression vectors. Nature Biotechnol. 6 (1), 47-55 (1988).
  7. Jarvis, D. L., Finn, E. E. Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors. Nature Biotechnol. 14 (1996), 1288-1292 (1996).
  8. Clem, R. J., Miller, L. K. Control of programmed cell death by the baculovirus genes p35 and iap. Mol. Cell. Biol. 14, 5212-5222 (1994).
  9. Leu, J. H., Kuo, Y. C., Kou, G. H., Lo, C. F. Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev. Comp. Immunol. 32, 121-133 (2008).
  10. Zhao, Y. G., Eggleston, P. E. Comparative analysis of promoters for transient gene expression in cultured mosquito cells. Insect Mol. Biol. 8 (1), 31-38 (1999).
  11. Nai, Y. S., Yang, Y. T., Kim, J. S., Wu, C. Y., Chen, Y. W., Wang, C. H. Baculoviral IAP2 and IAP3 encoded by Lymantria xylina multiple nucleopolyhedrovirus (LyxyMNPV) suppress insect cell apoptosis in a transient expression assay. Appl. Entomol. Zool. 51, 305-316 (2016).
  12. Geneaid™. Geneaid™ Midi Plasmid Kit & Geneaid™ Midi Plasmid Kit (Endotoxin Free) Instruction Manual Ver. 05.11.17. , Available from: http://www.geneaid.com/sites/default/files/PI13_0.pdf (2017).
  13. Eslami, A., Lujan, J. Western Blotting: Sample Preparation to Detection. J. Vis. Exp. (44), e2359 (2010).
  14. JoVE Science Education Database. Basic Methods in Cellular and Molecular Biology. Separating Protein with SDS-PAGE. , Cambridge, MA. Available from: https://www.jove.com/science-education/5058/separating-protein-with-sds-page (2017).
  15. Vucic, D., Kaiser, W. J., Harvey, A. J., Miller, L. K. Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc. Natl. Acad. Sci. USA. 94, 10183-10188 (1997).

Tags

遗传学 问题 132 瞬态表达 蛋白质功能检测 sf9 细胞系,毒蛾多 nucleopolyhedrovirus inhinbitor,果蝇热休克70启动子 Apoptosis-3 pDHsp/V5-His收割机 放线菌
昆虫细胞 (sf9) 外源基因在蛋白质功能检测中的瞬态表达
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Chang, J. C., Lee, S. J., Kim, J.More

Chang, J. C., Lee, S. J., Kim, J. S., Wang, C. H., Nai, Y. S. Transient Expression of Foreign Genes in Insect Cells (sf9) for Protein Functional Assay. J. Vis. Exp. (132), e56693, doi:10.3791/56693 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter