Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

基于末端碘氧化炔烃的 1-Iodoalkynes、12-Diiodoalkenes、11、2 Triiodoalkenes 的 Chemoselective 制备

Published: September 12, 2018 doi: 10.3791/58063
* These authors contributed equally

Summary

本文介绍了用高价碘试剂对炔烃末氧化碘的详细协议, chemoselectively 提供了 1 iodoalkynes、12 diiodoalkenes、11、2 triiodoalkenes。

Abstract

我们提出了 chemoselective 合成 1-(iodoethynyl)-4-甲苯, 1-(12-diiodovinyl)-4-甲苯, 1-甲基-4-(12, 2-triiodovinyl) 苯作为实际 chemoselective 制备 1-iodoalkynes 的典型例子, 12-diiodoalkenes 和 11, 2-triiodoalkenes 从 chemoselective 碘的终端炔烃介导的高价碘试剂。用p-tolylethyne 作为模型基质筛选各种碘源和/或高价碘试剂, 证实了 chemoselectivity。四丁基碘化 (TBAI) 和 (diacetoxyiodo) 苯 (PIDA) 的组合选择性地产生 1-iodoalkynes, 而基和 PIDA 的组合产生 12-diiodoalkenes。基于 TBAI-PIDA 和 PIDA 的单壶合成, 产生相应的11、2-triiodoalkenes。这些协议随后被应用于合成重要的芳香族和脂质体 1-iodoalkynes, 12-diiodoalkenes 和 11, 2-triiodoalkenes, 得到了良好的产量和优良的 chemoselectivity。

Introduction

Iodoalkynes 和 iodoalkenes 广泛应用于有机合成1234、生物活性物质的重要前体和积木, 并在合成材料和复杂分子给出了转换 C I 键5,6,7,8的容易。近年来, 炔烃的氧化碘越来越多地引起了 iodoalkyne 和 iodoalkene 衍生物的合成。迄今为止, 使用金属催化剂的有效方法9101112、高价-碘催化剂1314、阳极氧化系统15、离子液体系统16, 基 (或 I2)-氧化剂组合17,18,19,20, 超声波21, 相转移催化剂22, n-iodosuccinimide9,22,23,24,25, N-邓布利多26,27,28,29,30,31, 格利雅试剂32, 和啉催化剂17,33,24,35已开发为碘的炔烃。最近, 我们报告了一个实用的和 chemoselective 的协议, 合成 1-iodoalkynes, 12-diiodoalkenes, 11, 2-triiodoalkenes36。该方法具有绿色实用的特点: (1) 高价碘催化剂作为氧化功能化试剂的毒性较低, 与其他传统的重金属元素氧化剂3738 39,40,41,42, 和 (2) TBAI 和/或基被用作碘源。此外, 在温和的条件下, 我们的系统具有良好的选择性。chemoselective 合成 1-iodoalkynes, 12-diiodoalkenes 和 11, 2 triiodoalkenes 需要精确控制各种因素, 包括组成, 氧化剂, 碘源, 和溶剂。其中, 碘源是反应 chemoselectivity 的最重要因素。在对碘源和溶剂的几种类型和荷载进行筛选后, 确定并建立了三种方法。首先, TBAI 作为碘源结合 PIDA (TBAI PIDA) 是选择性的合成 1-iodoalkynes。或者, 用 PIDA 系统有效地获得 12-diiodoalkenes。两种方法均能提供高产、高 chemoselectivity 的相应产品。相应的三 iodinationproducts, i., 11, 2-triiodoalkenes, 得到了良好的产量从一锅合成, 结合了 TBAI-PIDA 和奇 PIDA 系统36

在这里, 我们将演示如何从 1-iodoalkynes 到 12-diiodoalkenes 和 11, 2-triiodoalkenes 在类似的反应条件下, chemoselectivity 碘的炔烃, 突出精确的控制, 可以通过明智地选择氧化剂, 碘源, 和溶剂施加。针对这种新型合成技术的发展, 对tolylethyne 作了模型基质。虽然以下协议的重点是合成 1-(iodoethynyl)-4-甲苯, (E)-1-(12-diiodovinyl)-4-甲苯和 1-甲基-4-(12, 2-triiodovinyl) 苯, 这些化合物代表 1-iodoalkynes, 12-diiodoalkenes 和 11, 2-triiodoalkenes,, 协议是广泛的范围内, 同样的技术可以适用于 chemoselective 碘的芳香和脂肪族终端炔烃36

使用的试剂在 chemoselective 碘的终端炔烃和小偏差的技术所描述的结果, 对目标产品的显著差异。例如, 从 TBAI 到基的碘源的变化和溶剂的变化从 ch3cn 到 ch3cn-H2O 对碘的 chemoselectivity 产生了戏剧性的影响。详细的议定书旨在帮助外地的新从业者与终端炔烃的 chemoselective 碘, 以避免在合成 1-iodoalkynes、12-diiodoalkenes 和11、2-triiodoalkenes 过程中出现许多常见的缺陷。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 合成 1-(Iodoethynyl)-4-甲苯 (2, 1-Iodoalkynes)

  1. 添加133毫克 (0.36 毫摩尔) 的 TBAI 和3毫升的 CH3CN 到一个反应管, 其中含有磁性搅拌杆, 这是开放的空气。然后, 用微量泵在混合物中加入 38 μ( 0.3 毫摩尔) 的 tolylethyne。
  2. 添加96.6 毫克 (0.3 毫摩尔) 的 PIDA, 以强力搅拌反应混合物10个部分在20分钟的时间内使用刮刀。
  3. 在室温下搅拌反应混合物3小时。
  4. 将产生的混合物倒入含有30毫升水的部位漏斗中, 用水钠2S2O3 (10%, 0.5 毫升) 淬火。用10毫升醋酸乙酯萃取水层三次。
  5. 用10毫升的饱和盐水和干燥的无水硫酸钠 (0.5 克) 冲洗有机复合层。
  6. 用傅书礼漏斗过滤掉硫酸硫酸钠, 在减压下浓缩滤液以获得原油。
  7. 以己烷为淋洗, 用硅凝胶柱层析法提纯原油产品;纯产物, 1-(iodoethynyl)-4-甲苯, 被获得作为淡黄色液体 (71.9 毫克, 99% 屈服;Rf= 0.79)。
  8. 1H 和13C 核磁共振波谱分析产品, 高效液相色谱 (HPLC)。

2. (E)-1-(12-Diiodovinyl)-4-甲苯 (3, 12-Diiodoalkenes) 的合成

  1. 加入124.5 毫克 (0.75 毫摩尔) 的基和1毫升的 CH3CN 到一个反应管, 其中含有磁性搅拌杆, 这是开放的空气。然后, 添加 38 ul (0.3 毫摩尔) 对tolylethyne 和3毫升的 H2O 的混合物通过微量泵。
  2. 添加96.6 毫克 (0.3 毫摩尔) 的 PIDA, 以强力搅拌反应混合物10个部分在20分钟的时间内使用刮刀。
  3. 在室温下搅拌反应混合物24小时。
  4. 将所产生的混合物倒入含有30毫升水的部位漏斗中, 用水钠2S2O3 (10% 毫升) 淬火, 并提取含醋酸乙酯1毫升的水层三次。
  5. 用10毫升盐水和干燥的无水硫酸钠 (0.5 克) 冲洗有机复合层。
  6. 用傅书礼漏斗过滤掉硫酸硫酸钠, 在减压下浓缩滤液以获得原油。
  7. 以己烷为淋洗, 用硅凝胶柱层析法提纯粗品。纯产物, (E)-1-(12-diiodovinyl)-4-甲苯, 被获得作为淡黄色液体 (111.9 毫克, 98% 屈服;Rf = 0.84)。
  8. 1H 和13C 核磁共振波谱分析了该产品, 并进行了 HPLC 测定。

3. 合成 1-甲基-4-(12, 2-Triiodovinyl) 苯 (4, 11, 2-Triiodoalkenes)

  1. 添加133毫克 (0.36 毫摩尔) 的 TBAI 和1毫升的 CH3CN 到一个反应管, 其中含有搅拌杆, 这是开放的空气。然后, 添加 38 ul (0.3 毫摩尔) 的ptolylethyne 使用微量泵。
  2. 添加96.6 毫克 (0.3 毫摩尔) 的 PIDA, 以强力搅拌反应混合物10个部分在20分钟的时间内使用刮刀。在室温下将反应混合物搅拌3小时。
  3. 加入124.5 毫克 (0.75 毫摩尔) 的基在3毫升的 H2O 的反应混合物。
  4. 添加193.2 毫克 (0.6 毫摩尔) 的 PIDA 到反应混合物10个部分在20分钟内使用刮刀。在室温下将反应混合物搅拌3小时。
  5. 再添加124.5 毫克 (0.75 毫摩尔) 的基在3毫升的 H2O 和1毫升的 CH3CN 到反应混合物。
  6. 在20分钟的时间内, 用刮刀将193.2 毫克 (0.6 毫摩尔) 的 PIDA 添加到反应混合物中10部分。在室温下将反应混合物搅拌12小时。
  7. 将所产生的混合物倒入含有30毫升水的部位漏斗中, 用水钠2S2O3 (10% 毫升) 淬火, 并提取含醋酸乙酯2毫升的水层三次。
  8. 用10毫升盐水和干燥的无水硫酸钠 (0.5 克) 冲洗有机复合层。
  9. 用傅书礼漏斗过滤掉硫酸硫酸钠, 在减压下浓缩滤液以获得原油。
  10. 用己烷对硅凝胶柱层析法提纯粗品, 得到纯产物, 1-甲基-4-(1, 2, 2-triiodovinyl) 苯, 作为黄液 (138.4 毫克, 93% 产量;Rf = 0.79)。
  11. 1H 和13C 核磁共振波谱分析了该产品, 并进行了 HPLC 测定。

4. HPLC 法测定终端炔烃单、二、三碘的选择性

注: hplc 法测定炔烃的单、二、三碘的选择性。高效液相色谱仪采用 5 μm、4.6 毫米 x 150 毫米柱、CH3CN/H2O = 75/25 (v/v) 作为溶剂, 流速为1.0 毫升/分钟, 以及λ = 254 nm 的探测器波长。

  1. 高效液相色谱外标准溶液的制备
    1. 精确地称出 2 (1-(iodoethynyl)-4-甲苯; 9.58 毫克, 39.58×10-3毫摩尔), 3 ((E)-1-(12-diiodovinyl)-4-甲苯; 19.29 毫克, 52.14×10-3毫摩尔) 和4 (1-甲基-4-(12, 2-triiodovinyl) 苯;11.10 毫克, 22.38×10-3毫摩尔)。
    2. 在1毫升的 CH3CN 中混合并溶解这三种化合物, 并在进行 HPLC 分离之前稀释库存溶液100次。
    3. 确定每种产品在 HPLC 色谱上的峰值面积比值 (%)。
    4. 根据以下公式计算每种化合物的摩尔吸收率:
      ε2 : ε3 : ε4 = a2/n2 : 3/n3 :4/n4
      其中ε是摩尔吸收, 一个峰值面积, n 摩尔重量。
  2. 根据以下公式计算 chemoselectivity:
    n2 : n3 : n4 = a2/ε2 : 3/ε 3: 4/ε4

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

chemoselective 合成 1-iodoalkynes, 12-diiodoalkenes 和 11, 2-triiodoalkenes 的基础上的氧化碘的ptolylethyne 总结在图 1。所有的反应都暴露在空气中。本研究中的所有化合物均采用1H 和13C 核磁共振波谱、质谱和 HPLC 法, 以获得产物的结构和反应的选择性, 并探讨其纯度。所获得的产品稳定后, 在4°c 在一个冰箱四月, i. e., 高效液相色谱和1H 核磁共振数据的显著变化未被检测到。本节介绍了代表性化合物的主要数据。

通过将核磁共振数据与参考数据进行比较, 确定了 1-(iodoethynyl)-4-甲苯 (2、1-iodoalkynes) 的结构。1H 核磁共振 (400 兆赫, CDCl3): δ = 7.32 (d, J = 8.0 Hz, 2 H), 7.11 (d, J = 8.0 Hz, 2 h), 2.34 (s, 3 h);13C 核磁共振 (100 兆赫, CDCl3): δ = 139.1, 132.2, 129.0, 120.4, 94.3, 21.6, 5.1。终端炔烃 (3.0 ppm) 的关键质子信号消失, 在13C 核磁共振谱中对 5.1 ppm 的信号进行观测, 证实了p-tolylethyne (图 2) 的单碘, 与报告的核磁共振数据一致。43. 高效液相色谱分析: C18 (5 µm, 4.6 毫米 x 150 毫米), CH3CN/小时2O = 75/25 (v/v), 流量 = 1.0毫升/分钟, λ = 1 nm, 保留时间: 254 分钟 (图 6.2)。

通过将核磁共振数据与参考数据进行比较, 确定了 (E)-1-(12-diiodovinyl)-4-甲苯 (3、12-diiodoalkenes) 的结构。1H 核磁共振 (400 兆赫, CDCl3): δ = 7.26 (d, J = 8.0 Hz, 2 h), 7.22 (s, 1 h), 7.15 (d, J = 8.0 Hz, 2 H), 2.34 (s, 3 h);13C 核磁共振 (100 兆赫, CDCl3): δ = 140.2, 139.0, 129.0, 128.4, 96.6, 80.1, 21.4。烯烃中的关键质子信号为 7.2 ppm, 证实了p-tolylethyne 的碘, 13的核磁共振谱显示了相应的烯烃碳原子, 分别为 96.6 ppm 和 80.1 ppm (图 3)。核磁共振数据与以前报告的值一致, 其中3被确定为E18。高效液相色谱分析: C18 (5 µm, 4.6 毫米 x 150 毫米), CH3CN/小时2O = 75/25 (v/v), 流速 = 1.0毫升/分钟/分, λ = 1 nm, 保留时间: 254 分钟 (图 10.6)。

用核磁共振、高分辨质谱 (HRMS) 和 HPLC 法测定了 1-甲基 4-(12、2-triiodovinyl) 苯 (4、11、2-triiodoalkene) 的结构。1H 核磁共振 (400 兆赫, CDCl3): δ = 7.16 (s, 4 h), 2.34 (s, 3 h);13C 核磁共振 (100 兆赫, CDCl3): δ = 144.9, 138.9, 129.3, 127.4, 112.9, 22.2, 21.5 (图 4);HRMS (EI) calcd 为 C9H7I3: 495.7682 ([M]+);找到: 495.7672 (图 5);高效液相色谱分析: C18 (5 µm, 4.6 毫米 x 150 毫米), CH3CN/小时2O = 75/25 (v/v), 流速 = 1.0毫升/分钟/分, λ = 1 nm, 保留时间: 254 分钟 (图 11.5)。

用 HPLC 法测定了碘的 chemoselectivity。如图 6所示, 234作为外部标准的 HPLC 性能。摩尔比率2, 34作为外在标准是 39.58: 52.14: 22.38。2:3:4为 49.801%: 30.762%: 19.436% (图 6) 的 HPLC 色谱中的峰面积比值 (%)。因此, 摩尔吸收率为ε2: ε 3: ε4= 2.131: 1: 1.472。

TBAI-PIDA 系统有选择地提供2 (2: 3:4= 100:0: 0;图 7), 而 PIDA 系统有选择地装备3(2:3:4= 0.8: 98.8: 0.4;图 8)。结合一锅, TBAI-PIDA 和 PIDA 系统有效地产生4作为一个主要产品 (2: 3:4= 3.7: 3.2: 93.1;图 9)。

Figure 1
图 1.Chemoselective 单, 二和三碘的炔烃对 Tolylethyne 作为模型基板使用。请单击此处查看此图的较大版本.

Figure 2
图 2.1H 核磁共振和13C 核磁共振谱的2.此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 3
图 3.1H 核磁共振和13C 核磁共振谱的3. 这一数字已从 36 ref 的许可中转载。请单击此处查看此图的较大版本.

Figure 4
图 4.1H 核磁共振和13C 核磁共振谱的4. 此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 5
图 5.HRMS 谱的4.此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 6
图 6.混合物的 HPLC 谱2, 3, 并4混合物作为外在标准(2: 9.58 毫克;3: 19.29 毫克;4: 11.10 毫克)。此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 7
图 7.HPLC 谱的2, 采用 TBAI-PIDA 系统合成.此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 8
图 8. 用 PIDA 体系合成了3的 HPLC 谱。此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Figure 9
图 9.HPLC 谱为 3, 综合运用 TBAI-PIDA 和 PIDA 系统在一锅中合成.此数字已从 ref 36 中复制, 并获得许可。请单击此处查看此图的较大版本.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

1-Iodoalkynes, 12-diiodoalkenes 和 11, 2-triiodoalkenes 可 chemoselectively 合成使用高价碘试剂作为有效的调解人氧化碘 (s)。这些 chemoselective 碘协议最关键的因素是碘源的性质和负载, 以及溶剂。例如, 1-iodoalkyne 2被获得作为主要产品 (52% 产量), 当 TBAI (2.5 equiv 装载) 被选择作为碘来源与甲醇结合作为溶剂 (2:3:4= 90:5: 5)。在将碘源转化为基时, 没有观察到这种选择性, 而使用 NH4则导致了 12-diiodoalkene 3的主要形成。反应条件优化的细节记录在别处36 ( 1)。

对 1-iodoalkynes36的形成条件进行了多次尝试。首先, TBAB 载荷对 1-iodoalkyne 2的选择性有很大影响。将 TBAB 的负载从2.5 降低到 1.2 equiv 有利于形成2。其次, 溶剂的性质对 1-iodoalkyne 2在选择性和产量方面的形成有强烈的影响。例如, CH3CN, Et2O, THF 和 DCM 有利于合成2的产量 (优秀) 和选择性 (绝对)。DMF 和甲苯的产率为2 , 但选择性略低。值得注意的是, 1-iodoalkynes 是最有效的产生, 在室温下处理终端炔烃 (1.0 equiv) 的 2−24 h 与 PIDA (1.0 equiv) 和 TBAI (1.2 equiv) 在 CH3CN, THF, 或 Et2O。

将溶剂转化为 CH3-H2O 混合物显著提高了 chemoselectivity 对 12-diiodoalkene 3, 当使用基作为碘源。建立了 12-diiodoalkenes 的最佳反应条件: 在 PIDA-h2O (1:3)36中, 以 equiv (1.0 equiv) 和基 (2.5 MeCN) 为 2−24, 在室温下处理末端炔烃 (1.0 equiv)。

结合上述两种方法, 可实现11、2-triiodoalkene 4的实用一锅合成。通常, 4-ethynytoluene (1.0 equiv), PIDA (1.0 equiv) 和 TBAI (1.2 equiv) 在室温下搅拌3小时, 随后加入 PIDA 和水基溶液。在这些反应条件下, 4-ethynytoluene 完全消耗;然而, 在第二步使用 1.0 equiv PIDA 时, 仅观察到44% 的转化。延长反应时间并没有增加转化。因此, PIDA (2.0 equiv) 的加载在第二步增加, 以加速这一转变, 导致4的形成88% 的产量作为一个主要的产品。有趣的是, 随着 PIDA 和基的增加, 4 (93%) 的产量进一步增加。因此, 对4合成方法的反应条件进行了优化。(i) 在 TBAI 的室温下, 终端炔烃 (1.0 equiv) 与 PIDA (1.0 equiv) 和 equiv (1.2 MeCN) 混合3小时;(ii) 添加 H2O、PIDA (2.0 equiv) 和基 (2.5 equiv) 后, 将反应混合物搅拌为另一种 3 H;(iii) 加上 H2O, PIDA (2.0 equiv) 和基 (2.5 equiv), 反应混合物被搅动了另外 12 H36

在此基础上, 提出了基于高价碘催化碘的 chemoselective 制备 1-iodoalkynes、12-diiodoalkenes、11、2 triiodoalkenes 的实用方法。这些方法具有 chemoselectivity 高、产率好、毒性低、反应条件温和、范围广等特点。我们期望这些新的合成方法可以应用于高效和 chemoselective 合成更多的 iodoalkyne 衍生物, 材料, 中间体和生物活性化合物。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么特别的东西可以透露。

Acknowledgments

这项工作得到了中国国家自然科学基金 (21502023) 的支持。

Materials

Name Company Catalog Number Comments
4-ethynyltoluene,98% Energy Chemical D080006
phenylacetylene,98% Energy Chemical W330041
1-ethynyl-4-methoxybenzene,98% Energy Chemical D080007
1-ethynyl-4-fluorobenzene,98% Energy Chemical D080005
4-(Trifluoromethyl)phenylacetylene, 98% Energy Chemical W320273
4-Ethynylbenzoic acid methyl ester,97% Energy Chemical A020720
3-Aminophenylacetylene,97% Energy Chemical D080001
3-Butyn-1-ol,98% Energy Chemical A040031
Propargylacetate,98% Energy Chemical L10031
Tetrabutylammonium Iodide,98% Energy Chemical E010070
Potassium iodide,98% Energy Chemical E010364
(diacetoxyiodo)benzene,99% Energy Chemical A020180
acetonitrile, HPLC grade fischer A998-4
magnetic stirrer IKA
rotary evaporator Buchi
Bruker AVANCE III 400 MHz Superconducting Fourier Bruker
High-performance liquid chromatography Shimadzu

DOWNLOAD MATERIALS LIST

References

  1. Sun, G. D., Wei, M. J., Luo, Z. H., Liu, Y. J., Chen, Z. J., Wang, Z. Q. An Alternative Scalable Process for the Synthesis of the Key Intermediate of Omarigliptin. Organic Process Research & Development. 20 (12), 2074-2079 (2016).
  2. Wang, D., Chen, S., Chen, B. H. Green synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters. 55 (51), 7026-7028 (2014).
  3. Chen, Z. W., Zeng, W., Jiang, H. F., Liu, L. X. Cu(II)-Catalyzed Synthesis of Naphthalene-1,3-diamine Derivatives from Haloalkynes and Amines. Organic Letters. 14 (21), 5385-5387 (2012).
  4. Boutin, R. H., Rapoport, H. α-Amino acid derivatives as chiral educts for asymmetric products. Synthesis of sphingosine from α′-amino-α,β-ynones. The Journal of Organic Chemistry. 51 (26), 5320-5327 (1986).
  5. Heravi, M. M., Asadi, S., Nazari, N., Lashkariani, B. M. Developments of Corey-Fuchs Reaction in Organic and Total Synthesis of Natural Products. Current Organic Chemistry. (21), 2196-2219 (2015).
  6. Vaidyanathan, G., McDougald, D., Koumarianou, E., Choi, J., Hens, M., Zalutsky, M. R. Synthesis and evaluation of 4-[18F]fluoropropoxy-3-iodobenzylguanidine ([18F]FPOIBG): A novel 18F-labeled analogue of MIBG. Nuclear Medicine and Biology. 42 (8), 673-684 (2015).
  7. Butini, S., Gemma, S., Brindisi, M., Borrelli, G., Lossani, A., Ponte, A. M., Torti, A., Maga, G., Marinelli, L., La Pietra, V., Fiorini, I., Lamponi, S., Campiani, G., Zisterer, D. M., Nathwani, S. M., Sartini, S., La Motta, C., Da Settimo, F., Novellino, E., Focher, F. Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry. 54 (5), 1401-1420 (2011).
  8. Kabalka, G. W., Shoup, T. M., Daniel, G. B., Goodman, M. M. Synthesis and evaluation of a new series of 17alpha-[(123)I]iodovinyl estradiols. Nuclear Medicine & Biology. 27 (3), 279-287 (2000).
  9. Lei, C. H., Jin, X. J., Zhou, J. R. Palladium-Catalyzed Alkynylation and Concomitant ortho Alkylation of Aryl Iodides. ACS Catalysis. 6, 1635-1639 (2016).
  10. Chen, W. W., Zhang, J. L., Wang, B., Zhao, Z. X., Wang, X. Y., Hu, Y. F. Tandem Synthesis of 3-Chloro-4-iodoisoxazoles from 1-Copper(I) Alkynes, Dichloroformaldoxime, and Molecular Iodine. The Journal of Organic Chemistry. 80 (4), 2413-2417 (2015).
  11. Brotherton, W. S., Clark, R. J., Zhu, L. Synthesis of 5-Iodo-1,4-disubstituted-1,2,3-triazoles Mediated by in Situ Generated Copper(I) Catalyst and Electrophilic Triiodide Ion. The Journal of Organic Chemistry. 77 (15), 6443-6455 (2012).
  12. Abe, H., Suzuki, H. Copper-Mediated Nucleophilic Displacement Reactions of 1-Haloalkynes. Halogen-Halogen Exchange and Sulfonylation. Bulletin of the Chemical Society of Japan. 72 (4), 787-798 (1999).
  13. Yan, J., Li, J., Cheng, D. Novel and Efficient Synthesis of 1-Iodoalkynes. Synlett. 2007 (15), 2442-2444 (2007).
  14. Ochiai, M., Uemura, K., Masaki, Y. J. α- versus β-Elimination of (Z)-( α-Halovinyl)iodonium Salts: Generation of α-Haloalkylidene Carbenes and Their Facile Intramolecular 1,2-Migration. Journal of the American Chemical Society. 115 (6), 2528-2529 (1993).
  15. Nishiguchi, I., Kanbe, O., Itoh, K., Maekawa, H. Facile Iodination of Terminal Acetylenes by Anodic Oxidation in the Presence of NaI. Cheminform. 2000 (1), 89-91 (2000).
  16. Nouzarian, M., Hosseinzadeh, R., Golchoubian, H. Ionic Liquid Iodinating Reagent for Mild and Efficient Iodination of Aromatic and Heteroaromatic Amines and Terminal Alkynes. Synthetic Communications. 43 (21), 2913-2925 (2013).
  17. Mader, S., Molinari, L., Rudolph, M., Rominger, F., Hashmi, A. S. K. Dual Gold-Catalyzed Head-to-Tail Coupling of Iodoalkynes. Chemistry-A European Journal. 21 (10), 3910-3913 (2015).
  18. Jiang, Q., Wang, J. Y., Guo, C. C. (NH4)2S2O8-Mediated Diiodination of Alkynes with Iodide in Water: Stereospecific Synthesis of (E)-Diiodoalkenes. Synthesis. 47 (14), 2081-2087 (2015).
  19. Madabhushi, S., Jillella, R., Mallu, K. K. R., Godala, K. R., Vangipuram, V. S. A new and efficient method for the synthesis of α,α-dihaloketones by oxyhalogenation of alkynes using oxone®-KX (X=Cl, Br, or I). Tetrahedron Letters. 54 (30), 3993-3996 (2013).
  20. Reddy, K. R., Venkateshwar, M., Maheswari, C. U., Kumar, P. S. Mild and efficient oxy-iodination of alkynes and phenols with potassium iodide and tert-butyl hydroperoxide. Tetrahedron Letters. 51 (16), 2170-2173 (2010).
  21. Stefani, H. A., Cella, R., Dorr, F. A., de Pereira, C. M. P., Gomes, F. P., Zeni, G. Ultrasound-assisted synthesis of functionalized arylacetylenes. Tetrahedron Letters. 46 (12), 2001-2003 (2005).
  22. Naskar, D., Roy, S. 1-Haloalkynes from Propiolic Acids: A Novel Catalytic Halodecarboxylation Protocol. The Journal of Organic Chemistry. 64 (18), 6896-6897 (1999).
  23. Gómez-Herrera, A., Nahra, F., Brill, M., Nolan, S. P., Cazin, C. S. J. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes. ChemCatChem. 8 (21), 3381-3388 (2016).
  24. Wang, B., Zhang, J. L., Wang, X. Y., Liu, N., Chen, W. W., Hu, Y. F. Tandem Reaction of 1-Copper(I) Alkynes for the Synthesis of 1,4,5-Trisubstituted 5-Chloro-1,2,3-triazoles. The Journal of Organic Chemistry. 78 (20), 10519-10523 (2013).
  25. Li, M., Li, Y., Zhao, B., Liang, F., Jin, L. Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions. RSC Advances. 4 (57), 30046-30049 (2014).
  26. Pérez, J. M., Crosbie, P., Lal, S., Díez-González, S. Copper (I)-Phosphinite Complexes in Click Cycloadditions: Three-Component Reactions and Preparation of 5-Iodotriazoles. ChemCatChem. 8 (13), 2222-2226 (2016).
  27. Wilkins, L. C., Lawson, J. R., Wieneke, P., Rominger, F., Hashmi, A. S. K., Hansmann, M. M., Melen, R. L. The Propargyl Rearrangement to Functionalised Allyl-Boron and Borocation Compounds. Chemistry-A European Journal. 22 (41), 14618-14624 (2016).
  28. Usanov, D. L., Yamamoto, H. Enantioselective Alkynylation of Aldehydes with 1-Haloalkynes Catalyzed by Tethered Bis(8-quinolinato) Chromium Complex. Journal of the American Chemical Society. 133 (5), 1286-1289 (2011).
  29. Luithle, J. E. A., Pietruszka, J. Synthesis of Enantiomerically Pure cis-Cyclopropylboronic Esters. European Journal of Organic Chemistry. 2000 (14), 2557-2562 (2000).
  30. Blackmore, I. J., Boa, A. N., Murray, E. J., Dennis, M., Woodward, S. A simple preparation of iodoarenes, iodoalkenes and iodoalkynes by reaction of organolithiums with 2,2,2-trifluoro-1-iodoethane. Tetrahedron Letters. 40 (36), 6671-6672 (1999).
  31. Lee, G. C. M., Tobias, B., Holmes, J. M., Harcourt, D. A., Garst, M. E. A new synthesis of substituted fulvenes. Journal of the American Chemical Society. 112 (25), 9330-9336 (1990).
  32. Rao, M. L. N., Periasamy, M. A Simple Convenient Method for the Synthesis of 1-Iodoalkynes. Synthetic Communications. 25 (15), 2295-2299 (1995).
  33. Zeiler, A., Ziegler, M. J., Rudolph, M., Rominger, F., Hashmi, A. S. K. Scope and Limitations of the Intermolecular Furan-Yne Cyclization. Advanced Synthesis & Catalysis. 357 (7), 1507-1514 (2015).
  34. Dumele, O., Wu, D. N., Trapp, N., Goroff, N., Diederich, F. Halogen Bonding of (Iodoethynyl)benzene Derivatives in Solution. Organic Letters. 16 (18), 4722-4725 (2014).
  35. Hashmi, A. S. K., Dopp, R., Lothschutz, C., Rudolph, M., Riedel, D., Rominger, F. Scope and Limitations of Palladium-Catalyzed Cross-Coupling Reactions with Organogold Compounds. Advanced Synthesis & Catalysis. 352 (8), 1307-1314 (2010).
  36. Liu, Y., Huang, D., Huang, J., Maruoka, K. Hypervalent Iodine Mediated Chemoselective Iodination of Alkynes. The Journal of Organic Chemistry. 82 (22), 11865-11871 (2017).
  37. Wang, X., Studer, A. Iodine (III) Reagents in Radical Chemistry. Accounts of Chemical Research. 50 (7), 1712-1724 (2017).
  38. Yoshimura, A., Zhdankin, V. V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews. 116 (5), 3328-3435 (2016).
  39. Charpentier, J., Fruh, N., Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chemical Reviews. 115 (2), 650-682 (2015).
  40. Zhdankin, V. V., Protasiewicz, J. D. Development of new hypervalent iodine reagents with improved properties and reactivity by redirecting secondary bonds at iodine center. Coordination Chemistry Reviews. 275 (16), 54-62 (2014).
  41. Stang, P. J., Zhdankin, V. V. Organic Polyvalent Iodine Compounds. Chemical Reviews. 96 (3), 1123-1178 (1996).
  42. Kohlhepp, S. V., Gulder, T. Hypervalent iodine(III) fluorinations of alkenes and diazo compounds: new opportunities in fluorination chemistry. Chemical Society Reviews. 45 (22), 6270-6288 (2016).
  43. Hein, J. E., Tripp, J. C., Krasnova, L. B., Sharpless, K. B., Fokin, V. V. Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes. Angewandte Chemie International Edition. 48 (43), 8018-8021 (2009).

Tags

化学 问题 139 Chemoselective 合成 炔烃 1-iodoalkynes 12-diiodoalkenes 11 2-triiodoalkenes 高价碘试剂
基于末端碘氧化炔烃的 1-Iodoalkynes、12-Diiodoalkenes、11、2 Triiodoalkenes 的 Chemoselective 制备
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Li, Y., Huang, D., Huang, J., Liu,More

Li, Y., Huang, D., Huang, J., Liu, Y., Maruoka, K. Chemoselective Preparation of 1-Iodoalkynes, 1,2-Diiodoalkenes, and 1,1,2-Triiodoalkenes Based on the Oxidative Iodination of Terminal Alkynes. J. Vis. Exp. (139), e58063, doi:10.3791/58063 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter