Основная цель этой статьи заключается в предоставлении подробной информации о том, как записывать мембранный потенциал (Vм) из средней мозговой артерии с помощью метода микроэлектрода impalement. Каннулированная средняя мозговая артерия уравновешивают, чтобы получить миогенный тон, и стенка сосуда пронзили с помощью микроэлектродов высокого сопротивления.
Мембранныйпотенциал (V м) сосудистых гладких мышечных клеток определяет тонус сосудов и, таким образом, приток крови к органу. Изменения в экспрессии и функции ионных каналов и электрогенных насосов, которые регулируют Vм в условиях заболевания потенциально может изменить Vм,сосудистый тон, и кровоток. Таким образом, необходимо базовое понимание электрофизиологии и методов, необходимых для точной записи Vм в здоровых и больных состояниях. Этот метод позволит модулировать Vm с помощью различных фармакологических агентов для восстановления Vм. Хотя Есть несколько методов, каждый со своими преимуществами и недостатками, эта статья предоставляет протоколы для записи Vм из каннуляющих сосудов сопротивления, таких как средняя мозговая артерия с помощью метода микроэлектродов impalement. Средние мозговые артерии могут получить миогенный тон в миографической камере, а стенка сосуда пронзили с помощью микроэлектродов высокого сопротивления. Сигнал Vm собирается с помощью электрометра, оцифровывается и анализируется. Этот метод обеспечивает точное считывание Vм стенки сосуда, не повреждая клетки и не изменяя мембранное сопротивление.
Мембранный потенциал (Vм) клетки относится к относительной разнице ионного заряда по плазменной мембране и относительной проницаемости мембраны к этим ионам. Vm генерируется дифференциальным распределением ионов и поддерживается ионными каналами и насосами. Ионные каналы, такие как Kq, Na,и Clй внести существенный вклад в отдых Vм. Сосудистые гладкие мышечные клетки (VSMCs) выражают более четырех различных типов Каналов Kи 1, два типа напряжения-gated Ca2 “каналов (VGCC)2, более двух типов Cl– каналы3, 4 , 5, магазин-управляемые каналы Ca2 ‘6, растяжечныеканалы катионов7,8,и электрогенные насосы натрия-калия ATPase9 в их плазменных мембранах, все из которых могут быть участвует в регулировании Vм.
Vм VSMCs зависит от давления промена. В ненагерметиковых судах Vm варьируется от -50 до -65 мВ, однако в герметике артериальных сегментов В м колеблется от -37 до -47 мВ10. Повышение внутрисосудистого давления приводит к деполяризации ВСМК11,снижает порог открытия VGCC, и увеличивает приток кальция, способствующий развитию миногенного тона12. Напротив, в пассивных или ненагерметизированных сосудах мембранная гиперполяризация, из-за высокой активности канала K, предотвратит открытие VGCC, что приведет к ограниченному входу кальция и уменьшению внутриклеточного кальция, способствуя меньшему сосудистый тон13. Таким образом, Vm из-за изменений давления промена, как представляется, играют важную роль в развитии тонусов сосудов, и как VGCC и Kq каналы играют решающую роль в регулировании Vм.
Vm варьируется между типом судна и видом. Vм -54 – 1,3 мВ у морских свинок superior мезентериальных артериальных полос14, -45 и 1 мВ в крысиных средних мозговых артериях при давлении просвета60 мм рт. ст.12,и -35 – 1 мВ в крысиных паранхмальных артериях при давлении 40 мм рт. ст. Отдых Vм записано в нерастянутой крысиной лимфатической мышце -48 и 2 мВ16. Vм церебральных VSMCs является более негативным, чем в периферических артериях. Для сравнения, кошачьих средних мозговых артерий, как сообщается, Vм около -70 мВ, в то время как мезентерические и коронарные артерии, как сообщается, -49 и -58 мВ, соответственно17,18. Различия в Vм через сосудистые кровати могут отражать различия в экспрессии и функции ионных каналов и электрогенных натриево-калийных насосов.
Увеличение и уменьшение ВМ называют мембранной деполяризацией и гиперполярализацией, соответственно. Эти изменения в Vм играют центральную роль во многих физиологических процессах, включая ион-канал gating, сигнализация клеток, сокращение мышц, и действия потенциального распространения. При фиксированном давлении, многие эндогенные и синтетические сосудорасширяющие соединения, которые активируют каналы Kи вызывают мембранную гиперполяризацию, в результате чего вазодилатация1,13. И наоборот, устойчивая деполяризация мембран имеет жизненно важное значение в агонист-индуцированной или рецепторо-опосредованного сосудосуживание19. Vm является критической переменной, которая не только регулирует приток Ca2 “через VGCC13, но и влияет на выпуск Ca2″ из внутренних магазинов20,21 и Ca 2“чувствительность контрактный аппарат22.
Хотя существует несколько методов записи Vм из различных типов клеток, данные, собранные из метода микроэлектрода прокола канналесора, как представляется, более физиологические, чем данные, полученные из изолированных VSMCs. При записи из изолированных VSMC с использованием текущих методов зажима, Vm рассматривается как спонтанные переходные гиперполяризации в VSMCs24. Изолированные VSMCs не находятся в синцитии, и изменения в устойчивости серии могут способствовать колебационному поведению Vm. С другой стороны, колебальное поведение не наблюдается, когда Vm записывается из нетронутых сосудов, вероятно, из-за контакта клеток между VSMCs, которые находятся в синцитии в артерии и суммируются по всему сосуду, ведущей к стабильной Vм 24. Таким образом, измерение Vм из под давлением сосудов с использованием стандартной методики микроэлектрода impalement относительно близко к физиологическим условиям.
Запись Vм из каннаулированных сосудов может обеспечить жизненно важную информацию, так как Vм VSMCs, которые находятся в синхронизации является одним из основных детерминантов сосудистого тона и кровотока, и модуляция Vм может обеспечить способ для разбавлять или сужают кровеносные сосуды. Таким образом, важно понимать методологию, связанную с записью Vm. В этой статье описывается внутриклеточная запись Vм из каннулялизных средних мозговых артерий (MCAs) с помощью метода микроэлектрода impalement. Этот протокол будет описывать, как подготовить MCAs, микроэлектроды, настроить электрометр и выполнить метод impalement для записи Vм. Также обсуждаются репрезентативные данные, общие проблемы, возникшие при использовании этого метода, и потенциальные проблемы.
Эта статья предоставляет необходимые шаги о том, как использовать острый метод микроэлектрода impalement для записи Vм от консервированной подготовки судна. Этот метод широко используется и предлагает высококачественные, последовательные записи Vm, которые отвечают на широкий ?…
The authors have nothing to disclose.
Эта работа была частично поддержана грантами от программы интрамуральной поддержки (IRSP) от УГМК, Грантом развития ученых AHA (13SDG14000006), присужденными Малликарджуне Р. Паббиди.
Dissection instruments | |||
Aneshetic Vaporiser | Parkland scientific | V3000PK | |
Dissection microscope | Nikon Instruments Inc., NY | Eclipse Ti-S | |
Kleine Guillotine Type 7575 | Harvard Apparatus, MA | 73-198 | |
Littauer Bone Cutter | Fine science tools | 16152-15 | |
Moria MC40 Ultra Fine Forceps | Fine science tools | 11370-40 | |
Surgical scissors Sharp-Blunt | Fine science tools | 14008-14 | |
Suture | Harvard Apparatus | 72-3287 | |
Vannas Spring Scissors | Fine science tools | 15018-10 | |
Electrophysiology Instruments | |||
Charge-coupled device camera | Qimaging, , BC | Retiga 2000R | |
Differential electrometer amplifier | WPI | FD223A | |
In-line pressure transducer | Harvard Apparatus, MA | MA1 72-4496 | |
Micromanipulator | Thor labs | PCS-5400 | |
Microelectrodes | Warner Instruments LLC, CT | G200-6, | |
Micro Fil (Microfiber syringe) | WPI | MF28G67-5 | |
Microelectrode holder | WPI | MEH1SF | |
Myograph | Living Systems Instrumentation, VT | CH-1-SH | |
Puller | Sutter Instrument, San Rafael, CA | P-97 | |
Vibration-free table | TMC | 3435-14 | |
Softwares | |||
Clampex 10 | Molecular devices | ||
p Clamp 10 | Molecular devices | ||
Imaging software | Nikon, NY | NIS-elements | |
Chemicals | |||
NaCl | Sigma | S7653 | |
KCl | Sigma | P4504 | |
MgSO4 | Sigma | M7506 | |
CaCl2 | Sigma | C3881 | |
HEPES | Sigma | H7006 | |
Glucose | Sigma | G7021 | |
NaH2PO4 | Sigma | S0751 | |
NaHCO3 | Sigma | S5761 |