Gli acceleratori lineari clinici possono essere utilizzati per determinare gli effetti biologici di un’ampia gamma di tassi di dose sulle cellule tumorali. Discutiamo di come impostare un acceleratore lineare per saggi e saggi basati sulle cellule per le cellule staminali tumorali coltivate come le sfere tumorali nelle linee di sospensione e delle cellule coltivate come colture aderenti.
La radioterapia rimane uno dei capisaldi della gestione del cancro. Per la maggior parte dei tumori, è la più efficace, terapia non chirurgica per debulk tumori. Qui, descriviamo un metodo per irradiare le cellule tumorali con un acceleratore lineare. Il progresso della tecnologia dell’acceleratore lineare ha migliorato la precisione e l’efficienza della radioterapia. Gli effetti biologici di un’ampia gamma di dosi di radiazioni e tassi di dose continuano ad essere un’intensa area di indagine. L’uso di acceleratori lineari può facilitare questi studi utilizzando dosi e tassi di dose clinicamente rilevanti.
La radioterapia è un trattamento efficace per molti tipi di cancro1,2,3,4. L’irradiazione extra-alta del tasso di dose è relativamente nuova nella radioterapia ed è resa possibile dai recenti progressi tecnologici negli acceleratori lineari5. I vantaggi clinici dell’irradiazione extra elevata rispetto al tasso di dose standard includono tempi di trattamento ridotti e una migliore esperienza del paziente. Gli acceleratori lineari forniscono anche un ambiente clinico per gli studi di biologia delle radiazioni basate sulla coltura cellulare. Le implicazioni biologiche e terapeutiche della dose e dei tassi di dose di radiazioni sono state al centro dell’interesse degli oncologi e biologi delle radiazioni per i decenni6,7,8. Tuttavia, la radiobiologia dell’irradiazione extra elevata della dose e dell’irradiazione flash – un tasso di dose estremamente elevato di radiazioni – deve ancora essere studiata a fondo.
L’irradiazione a raggi gamma è ampiamente utilizzata nella biologia delle radiazioni basata sulla coltura cellulare9,10,11. La radiazione è ottenuta dai raggi gamma emessi da sorgenti di isotopi radioattivi in decomposizione, tipicamente Cesio-137. L’uso di fonti radioattive è altamente regolamentato e spesso limitato. Con l’irradiazione basata sulle fonti, è difficile testare un’ampia gamma di tassi di dose, limitando la sua utilità nell’analisi degli effetti biologici dei tassi di dose misurabili cliniche12.
Ci sono stati diversi studi che illustrano sia la dose e gli effetti tasso di dose12,13,14,15,16,17. In questi studi, sono state utilizzate sia l’irradiazione gamma generata da isotopi radioattivi che dai raggi X generati da acceleratori lineari. Sono state utilizzate una varietà di linee cellulari che rappresentano il cancro del polmone, il cancro cervicale, il glioblastoma e il melanoma. Gli effetti delle radiazioni sulla sopravvivenza delle cellule, l’arresto del ciclo cellulare, l’apoptosi e il danno al DNA sono stati valutati come letture12,13,14,15,16,17 . Qui, descriviamo un metodo per definire gli effetti biologici della dose di radiazioni clinicamente rilevanti e dei tassi di dose fornendo radiazioni a raggi X utilizzando un acceleratore lineare. Questi studi devono essere eseguiti con stretta collaborazione tra il biologo, l’oncologo delle radiazioni e il fisico medico.
La radioterapia è parte integrante della gestione del cancro. Gli sforzi in corso mirano a migliorare l’efficacia e l’efficienza del trattamento con radiazioni. I progressi nella tecnologia degli acceleratori lineari hanno fornito l’opportunità di trattare i pazienti con precisione e sicurezza senza precedenti. Poiché la maggior parte dei pazienti sono trattati con raggi X ad alta energia da acceleratori lineari, gli studi che esaminano gli effetti biologici di una vasta gamma di tassi di dose eseguiti su acceleratori…
The authors have nothing to disclose.
Ringraziamo il Cleveland Clinic Department of Radiation Oncology per l’uso degli acceleratori lineari. Ringraziamo il dottor Jeremy Rich per il suo generoso dono di cellule staminali del glioma. Questa ricerca è stata supportata dalla Cleveland Clinic.
Material | |||
glioma stem-like cell 4121 | gift from Dr. Jeremy Rich | ||
293 cells | ATCC | CRL-1573 | |
neuron stem cell culture media | Thermo Fisher Scientific | 21103049 | NeurobasalTM media |
DMEM | Thermo Fisher Scientific | 10569044 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 16000044 | |
Penicillin/Streptomycin | Thermo Fisher Scientific | 15140-122 | |
Recombinant Human EGF Protein | R&D Systems | 236-EG-01M | |
Recombinant Human FGF basic | R&D Systems | 4114-TC-01M | |
B-27™ Supplement | Thermo Fisher Scientific | 17504044 | |
Sodium Pyruvate | Thermo Fisher Scientific | 11360070 | |
L-Glutamine | Thermo Fisher Scientific | 25030164 | |
Tripsin-EDTA | Thermo Fisher | 25200056 | |
extracellular proten matrix | Corning | 354277 | MatrigelTM |
Ethanol | Fisher chemical | A4094 | |
Equipment | |||
10 cm cell culture dish | Denville | T1110 | |
3.5 cm cell culture dish | USA Scientific Inc. | CC7682-3340 | |
22x22mm glass cover slip | electron microscopy sciences | 72210-10 | |
15 ml centrifuge tube | Thomas Scientific | 1159M36 | |
50 ml centrifuge tube | Thomas Scientific | 1158R10 | |
5 ml Pipette | Fisher Scientific | 14-955-233 | |
pipet aid | Fisher Scientific | 13-681-06 | |
Vortex mixer | Fisher Scientific | 02-215-414 | |
Centrifuge | Eppendorf | 5810R | |
Linear Accelerator | Varian | n/a | |
water equivalent material | Sun Nuclear corporation | 557 | Solid waterTM |
Reagent preparation | |||
DMEM media | 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin G, 100 µg/mL streptomycin in 500 ml DMEM media | ||
stem cell culture media | 10 ml B27 supplement, 20 µg hFGF, 20 µg hEGF, 2 mM L-glutamine, 100 units/mL penicillin G, 100 µg/mL streptomycin in 500 ml Neurobasal media |