Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

小鼠主视觉皮质中的单眼视觉剥夺和眼部优势可塑性测量

Published: February 8, 2020 doi: 10.3791/60600
* These authors contributed equally

Summary

本文提出了单眼视觉剥夺和眼主导性可塑性分析的详细方案,是研究关键时期视觉可塑性的神经机制和特定基因对视觉发展。

Abstract

单目视觉剥夺是诱导原发性视觉皮质反应可塑性的一个很好的实验范式。一般来说,皮层对反向眼睛对刺激的反应比小鼠主要视觉皮层(V1)的双目部分的侧边眼的反应要强得多。在哺乳动物的关键时期,缝合反向眼睛将导致V1细胞对反向眼部刺激的反应迅速丧失。随着转基因技术的不断发展,越来越多的研究利用转基因小鼠作为实验模型,研究特定基因对眼部支配力(OD)可塑性的影响。在这项研究中,我们介绍了单目视觉剥夺的详细方案,并计算了小鼠V1中OD可塑性的变化。在关键时期单眼剥夺(MD)4天后,测量每个神经元的方向调谐曲线,并比较V1中第四层神经元的调谐曲线。可使用每个细胞的眼部 OD 评分来计算反向偏置指数 (CBI),以指示 OD 可塑性的程度。该实验技术对于研究关键时期OD可塑性的神经机制和特定基因在神经发育中的作用具有重要意义。主要局限性是,急性研究无法研究同一小鼠在不同时间的神经可塑性变化。

Introduction

单目视觉剥夺是检验V1可塑性的绝佳实验范例。为了研究视觉体验在神经发育中的重要性,大卫·胡贝尔和托斯滕·威塞尔1,2在不同时间点和不同时间段的一只眼睛中剥夺正常视力的小猫。然后,他们观察了贫困和非贫困眼睛V1反应强度的变化。他们的结果显示,在头三个月里,对眼睛有异常低反应的神经元数量是被缝合的。然而,小猫的神经元在各方面的反应仍然与正常成年猫的眼睛的反应相同,而正常成年猫的眼睛被缝合了一年,小猫没有恢复。MD在成年猫不能诱导OD可塑性。因此,视觉体验对 V1 布线的影响在短暂、明确定义的开发阶段非常强烈,前后相同的刺激影响较小。这种对视觉输入的易感性增加的阶段被称为视觉皮层的关键时期。

虽然小鼠是夜间动物,但小鼠V1中的单个神经元具有与猫3、4、5的神经元相似的特性。近年来,随着转基因技术的飞速发展,越来越多的视觉神经科学研究将小鼠作为实验模型6、7、8。在小鼠视觉研究中,神经科学家使用突变体和敲除小鼠线,从而控制小鼠的基因组成。尽管小鼠 V1 缺少 OD 柱,但 V1 双目区域中的单个神经元显示出显著的 OD 属性。例如,大多数细胞对反向刺激的反应比对边侧刺激的反应更强烈。在关键时期暂时关闭一只眼睛,导致OD指数分布9、10、11发生显著变化。因此,MD可用于建立OD可塑性模型,以研究神经发育障碍中涉及的基因如何影响体内皮质可塑性。

本文介绍了一种医学实验方法,并推荐了一种常用的方法(电生理记录),用于分析单眼视觉剥夺期间OD可塑性的变化。该方法已广泛应用于许多实验室超过20年12,13,14,15,16。在测量OD可塑性时也使用其他方法,如慢性视觉唤起电位(VEP)记录17,和内在光学成像(IOI)18 。这种急性方法的显著优点是易于遵循,结果非常可靠。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

本方案从四川省医学科学院实验动物研究所和四川省人民医院获得雄性C57Bl/6小鼠。所有动物护理和实验程序均获得中国电子科技大学动物护理与使用委员会的批准。

1. 小鼠产后第28天的单眼剥夺(MD)

  1. 将手术工具、缝合针(直径0.25毫米,弦直径0.07毫米)和棉签放入铝盒中,在120°C下高压灭菌,用75%乙醇消毒发动机罩。在干燥炉中干燥手术工具。
  2. 制备2%的甘蔗溶液,在75°C下放入水浴中,避免凝固。
  3. 使用与氧气混合的胶合物对小鼠进行麻醉(2% 感应和 1.2-1.5% 维护)。将鼠标固定在立体装置上,并使用热调节装置将小鼠体温保持在37°C,防止体温过低。
  4. 在双眼涂上一层薄薄的石油眼膏。
  5. 在带照明的解剖显微镜下,将眼睑缝合在一只眼睛上。使针穿过眼睑的两侧2x(1A),并做约四针。
  6. 将螺纹连接 2⁄3x,然后修剪螺纹。在结上涂上3μL的即时干燥胶,以增加其稳定性。然后切割额外的缝合线。
  7. 向小鼠提供丁丙诺啡(1mg/kg)的腹内注射。
  8. 将鼠标转移到加热垫上,使其体温保持在 37°C,并防止体温过低并监测,直到其恢复知觉。
  9. 当鼠标完全清醒时,将其放入单独的保持笼中。
  10. 每天检查眼睑,确保它们保持闭上并未感染。如果找到眼睑开口,则排除鼠标。
  11. 在电生理记录之前,使用与氧气混合的胶质对小鼠进行麻醉(2%感应和1.2~1.5%的维护)。
  12. 用剪刀取出缝合,露出眼球。小心修剪眼睑。
  13. 用透镜溶液冲洗眼睛,并在显微镜下检查眼睛是否清晰。排除角膜不和或感染迹象的小鼠。

2. 小鼠V1双目区域第4天单目剥夺后颅骨切除术

  1. 麻醉小鼠后,检查麻醉的深度,因为对脚趾捏没有反应。
  2. 将鼠标放在立体装置上并固定。调整耳杆和牙棒的高度,以保持大脑平坦和稳定。
  3. 使用加热垫保持体温。
  4. 在眼睛表面涂上石油基眼膏,使其保持湿润。
  5. 去除鼠标头上的头发,露出它的皮肤。用交替擦洗碘和70%乙醇3x擦皮肤。
  6. 在耳朵之间切开一个8 x 8毫米的皮肤区域,露出头骨并去除头皮组织。然后用30%过氧化氢去除覆盖结缔组织。
  7. 在小脑上方的头骨上钻一个1 x 1毫米的孔。在孔中固定一个小骨螺钉作为参考。
  8. 在V1双目区域从对立半球到贫困眼进行直径为1毫米的小颅切除术(图1B,A-P:lambda -0.51_lambda ±1.67 mm;M-L: -2.6* -3.0 毫米;D-V: 0⁄1 毫米)。小心地取出头骨碎片,而不会伤害大脑。
  9. 在40°C下用75μL的2%角质甘蔗覆盖裸露的皮质表面,以防止干燥。
  10. 将钨电极固定在立体框架上。将钨电极垂直放置在暴露的皮层表面,即V1的双目区域,以确保被记录的细胞对两只眼睛有反应。
  11. 使用棉签去除眼凝胶,每 2 小时向眼睛涂抹硅油。

3. 视觉刺激和电生理记录

  1. 用不透明的塑料板遮住一只眼睛。将液晶显示器放置在距鼠标眼睛 23 厘米的位置。
  2. 当小鼠完全麻醉时,麻醉降低至0.5~0.8%。
  3. 使用油液压微操作器缓慢推进微电极。当观察到高信噪比,电极被推进到第4层(1C,深度约为250~450μm)时,停止它。确保放大系数设置为 1,000,滤波器设置为 300*100 Hz,采样速率设置为 40 Hz。
  4. 在 LED 监视器上呈现一个全场移动正弦光栅(图 1D,12方向,100% 对比度,2 Hz 临时频率,每度空间频率 0.04 周期)。
  5. 通过分别刺激侧侧和反向眼来测量细胞的反应。呈现总计 3~5 倍。
  6. 测量每个穿透中五到八个细胞的响应。在每只鼠标中执行四到六次穿透。
  7. 记录后,将异苯可图的流速调整到5%或以上,继续异苯二苯暴露1分钟,然后进行宫颈脱位。
    注:在V1双目区域中,单独的穿透力间隔至少200μm。

4. 离线尖峰排序和数据分析

  1. 当原始信号超过阈值电平时检测峰值。在第一个正峰值或负峰值上对齐捕获的峰值。使用软件检测来自不同单元的峰值。
  2. 设置两个光标:一个用于正,另一个用于负偏转。设置尖峰模板 (图 2A.将模板区域设置为不同类别的尖峰之间变化最大的区域。
  3. 使用主组件分析将它们分隔成群集。聚类方法可能因实验室而异。
  4. 使用 K 均值算法对边界的尖峰进行分类。
  5. 将方向与尖峰射击速率相关联,并绘制侧向和反向眼的方向调整曲线。
  6. 计算单个单位的 OD 指数,该指数表示反向/边面响应强度比:
    Equation 1
    其中RRipsi分别是细胞对反向和益边眼的最佳反应,而Rspon是细胞的自发活动。
  7. 将 OD 分数分配到 1+7,如下所示: = 1 到 +0.75 = 1;±0.75 至 ±0.45 = 2;±0.45 至 ±0.15 = 3;±0.15 至 0.15 = 4;0.15 到 0.45 = 5;0.45 到 0.75 = 6;和 0.75 到 1 = 7。
  8. 计算反向偏置指数 (CBI):
    Equation 2
    其中N是单元格数,nx等于 OD 分数等于 x 的单元格编号。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

此处描述的实验结果使被剥夺和非剥夺小鼠在关键时期(P19_P32)成功进行了MD和OD可塑性测量。图 1显示了如何在 V1 的双目区域的第 4 层中执行单单元录像,以比较 MD 后 4 天在益边眼和反向眼中的响应。图 2显示了用于刺激侧边和反向眼睛的尖峰排序和方向调谐测量值。对于尖峰排序,通过聚类尖峰的主要组件权重建立了尖峰模板。例如(2A,B),单元格01和单元格02按尖峰排序进行分类。单单位的方向调谐曲线是通过刺激侧侧和反向眼睛来测量的。图 2C,D显示了四个样本单元的方向调整曲线,其中两个来自接受 MD 的鼠标,另一个来自没有进行 MD 的鼠标。结果表明,在进行MD后4天,通过刺激小鼠的反向眼和侧侧眼,发射率相对接近(2C)。然而,通过刺激反向眼获得的发射速率比刺激非剥夺小鼠的侧边眼获得的射门率要强得多(2D)。图 3A显示了所有单位的 OD 分数分布情况,以及接受 MD 的鼠标的 CBI 指数(P28,MD 后 4 天)。图 3B显示了所有单位的 OD 分数和来自非剥夺 C57/BL6 鼠标的 CBI 指数(P26,无 MD)。对于 MD 鼠标,CBI 指数为 0.38,对于另一个没有 MD 的鼠标,CBI 指数为 0.67。

结果表明,V1神经元对反向眼对刺激的反应比非剥夺小鼠双目部分的益边眼反应强得多。然而,在MD在临界期4天后,大多数神经元对反向眼刺激的反应比对益边眼的反应相对接近或较弱。因此,V1神经元在关键时期具有显著的OD可塑性。MD通过刺激反向和侧侧眼来改变细胞反应的相对强度。

Figure 1
图1:视觉剥夺实验的原理图。A) 缝合眼睑的示意图.针穿过眼睑2倍,然后2~3节。图像 1⁄4 显示了针头穿过眼睑的位置。(B) 用麻醉的、头部固定的鼠标记录原理图。V1 的放大视图显示在灰色圆圈中,双目区域以深灰色表示。双筒望远镜区域内的录制点以小圆圈显示。(C) 小鼠大脑的日冕平面和记录点显示在 V1 的第 4 层中。(D) 不同方向的视觉刺激的插图.每个测量都使用了12个不同的方向。请点击此处查看此图的较大版本。

Figure 2
图2:数据分析过程的插图。A) 尖峰是使用商业软件排序的(见材料表)。绿色波形显示滤波信号(0.3~10 kHz)。从筛选的数据对两个单元格进行排序。(B) 通过尖峰分选分离单个微电极上的尖峰活性的示例。尖峰排序方法是分析的主要组件。(C) 从两个细胞定向调谐,以响应单眼剥夺小鼠(单元格 01 和单元格 02)中的反向(红色实线)和 ipsi侧(红色虚线)刺激。(D) 从两个细胞定向调谐,以响应非剥夺小鼠(单元格 03 和单元格 04)中的反向(蓝色实线)和 ipsi侧(蓝色虚线)眼部刺激。误差条指示每个测量中均值 (SEM) 的标准误差。黑线表示自发活动。请点击此处查看此图的较大版本。

Figure 3
图 3:按 MD 在 OD 索引中的偏移。我们通过单独刺激侧向和反向眼睛来记录细胞在反向大脑中的双目区域的反应。我们计算并添加了单个单位的 OD 索引。(A) 从 P28_P32 进行 MD 的 C57/BL6 小鼠记录的 38 个神经元的 OD 分数分布。(B) 非剥夺 C57/BL6 小鼠的 38 个神经元的 OD 分数分布。请点击此处查看此图的较大版本。

   

Subscription Required. Please recommend JoVE to your librarian.

Discussion

我们提出了一个详细的协议,MD和测量OD可塑性通过单单元记录。该协议在视觉神经科学中得到了广泛的应用。虽然MD协议并不复杂,但有一些关键的外科手术必须小心遵循。首先,有两个重要的细节,以确保缝合的质量。如果缝合集中在眼睑的中段,缝合线就足够稳定。此外,3 μL的胶水被涂在结的头部,以增加结的稳定性,以防止眼睛重新开放。其次,应采取一些关键步骤改善伤口愈合,减少不适。缝合法对协议非常重要。以前的研究已经证明,一个简单的连续缝合模式具有更好的伤口愈合和较短的缝合时间19,20的好处。螺纹应薄和稳定,以避免造成大伤口,减少不适。直径约0.25毫米的缝合针适合缝合,需要两到三节。

录音中还需要注意一些要点。麻醉浓度控制是电生理记录中的一个重要因素。在麻醉动物中,实验易于控制,结果稳定可靠。以前的许多研究都使用聚氨酯作为麻醉剂。然而,很难使用聚氨酯来控制小鼠的麻醉深度。在较低的水平,小鼠没有完全麻醉,并在较高水平,小鼠容易死亡。在小鼠研究中,异曲兰更合适作为麻醉剂。虽然在接受超过1%异他尿21的小鼠的新皮质中几乎不可能获得良好的神经活性,但大多数V1神经元在低浓度的异氯乙烯中具有良好的视觉唤起活性。因此,从高浓度的亚散二苯二苯(1%)开始麻醉小鼠,然后减少胶质(0.5~0.8%)当老鼠被完全麻醉时。此外,从贫困眼睛和非贫困眼睛交替测量可以保证实验结果的准确性。测量一只眼睛的响应多次,然后测量另一只眼睛是不适当的,因为电极可能会移动,并且细胞的反应强度在长期记录期间可能会发生变化。此外,该协议针对第4层中的神经元,这是V1中的主要thalamo受体层。但是,在老年小鼠中,它们表现出OD可塑性,主要通过睁眼力调节,最好在第2层或第3层中记录,在关键时期之后保持可塑性。因此,确定记录中的皮质层压层非常重要。

方法中仍有一些限制。计算相对准确的 CBI 指数需要 4~6 个穿透力和 30 多个单位,因为记录样本太少会导致结果不准确。但是,从一只鼠标获得30多个高质量单元并不容易。更好的方法是使用多单元记录,它可以在单个测量中提供足够的单位。此外,VEP记录和IOI也可用于测量OD可塑性17,18。单单元记录涉及单个神经元的活动,而 VEP 涉及记录电极附近神经元的总和的活动。但单单元记录数据没有产生神经元间同步的信息,而VEP振幅取决于神经元之间的时间同步22。反向光栅通常用于 VEP 测量。最常用的反转频率为 3⁄4 Hz。但是,在显示光栅时,确切的值由计算机刷新率决定。OD 可塑性是通过比较贫困和非贫困眼睛引起的 VEP 振幅的平均值来测量的。IOI技术可以有效地检测由反向和益边刺激引起的血氧水平依赖信号。它可以显示V1中大面积的OD可塑性。

综上所述,单单元记录和IOI适用于急性麻醉实验。今后,MD和OD可塑性测量结合将广泛应用于神经可塑性研究作为实验方法。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

提交人宣称,他们没有相互竞争的经济利益。

Acknowledgments

这项研究得到了国家自然科学基金(81571770、81771925、81861128001)的支持。

Materials

Name Company Catalog Number Comments
502 glue M&G Chenguang Stationery Co., Ltd. AWG97028
Acquizition card National Instument PCI-6250
Agarose Biowest G-10
Amplifier A-M system Model 1800
Atropine Aladdin Bio-Chem Technology Co., Ltd A135946-5
Brain Stereotaxic Apparatus RWD Life Science Co.,Ltd 68001
Cohan-Vannas spring scissors Fine Science Tools 15000-02
Contact Lenses Solutions Beijing Dr. Lun Eye Care Products Co., Ltd. GM17064
Cotton swabs Henan Guangderun Medical Instruments Co.,Ltd
Fine needle holder SuZhou Stronger Medical Instruments Co.,Ltd CZQ1370
Forcep 66 Vision Tech Co., Ltd. 53320A
Forcep 66 Vision Tech Co., Ltd. 53072
Forcep 66 Vision Tech Co., Ltd. #5
Heating pad Stryker TP 700 T
Illuminator Motic China Group Co., Ltd. MLC-150C
Isoflurane RWD Life Science Co.,Ltd R510-22
LCD monitor Philips (China) Investment Co., Ltd. 39PHF3251/T3
Microscope SOPTOP SZMT1
Noninvasive Vital Signs Monitor Mouseox
Oil hydraulic micromanipulator NARISHIGE International Ltd. PC-5N06022
Petrolatum Eye Gel Dezhou Yile Disinfection Technology Co., Ltd. 17C801
Spike2 Cambridge Electronic Design, Cambridge, UK Spike2 Version 9
Surgical scissors 66 Vision Tech Co., Ltd. 54010
Surgical scissors 66 Vision Tech Co., Ltd. 54002
Suture Needle Ningbo Medical Co.,Ltd 3/8 arc 2.5*8
Tungsten Electrode FHC, Inc L504-01B
Xylocaine Huaqing

DOWNLOAD MATERIALS LIST

References

  1. Hubel, D. H., Wiesel, T. N. Effects of monocular deprivation in kittens. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie. 248 (6), 492-497 (1964).
  2. Daw, N. W., Fox, K., Sato, H., Czepita, D. Critical period for monocular deprivation in the cat visual cortex. Journal of Neurophysiology. 67 (1), 197-202 (1992).
  3. Guire, E. S., Lickey, M. E., Gordon, B. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. Journal of Neurophysiology. 81 (1), 121-128 (1999).
  4. Wang, L., Sarnaik, R., Rangarajan, K. V., Liu, X., Cang, J. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. Journal of Neuroscience. 30 (49), 16573-16584 (2010).
  5. Niell, C. M. Cell Types, circuits, and receptive fields in the mouse visual cortex. Annual Review of Neuroscience. 38 (1), 413-431 (2015).
  6. Lee, S. H., et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature. 488 (8), 379-383 (2012).
  7. Cossell, L., et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature. 518 (2), 399-403 (2015).
  8. Lacaruso, M. F., Gasler, L. T., Hofer, S. B. Synaptic organization of visual space in primary visual cortex. Nature. 547 (7), 449-452 (2017).
  9. Metin, C., Godement, P., Imbert, M. The primary visual cortex in the mouse: Receptive field properties and functional organization. Experimental Brain Research. 69 (3), 594-612 (1988).
  10. Marshel, J. H., Garrett, M. E., Nauhaus, I., Callaway, E. M. Functional specialization of seven mouse visual cortical areas. Neuron. 72 (6), 1040-1054 (2011).
  11. Gordon, J. A., Stryker, M. P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. The Journal of Neuroscience. 16 (10), 3274-3286 (1996).
  12. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science. 309 (5744), 2222-2226 (2005).
  13. Sawtell, N. B., et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron. 38 (6), 977-985 (2003).
  14. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T., Hubener, M. Prior experience enhances plasticity in adult visual cortex. Nature Neuroscience. 9 (12), 127-132 (2006).
  15. Crozier, R. A., Wang, Y., Liu, C., Bear, M. F. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proceedings of the National Academy of Sciences. 104 (4), 1383-1388 (2007).
  16. Tagawa, Y., Kanold, P. O., Majdan, M., Shatz, C. J. Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nature Neuroscience. 8 (3), 380-388 (2005).
  17. Lickey, M. E., Pham, T. A., Gordon, B. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice. Vision Research. 44, 3381-3387 (2004).
  18. Cang, J., Kalatsky, V. A., Lowel, S., Stryker, M. P. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vision Neuroscience. 22 (5), 685-691 (2005).
  19. Khan, I. U., et al. Evaluation of different suturing techniques for cystotomy closure in canines. Journal of Animal & Plant Sciences. 23 (4), 981-985 (2013).
  20. Weisman, D. L., Smeak, D. D., Birchard, S. J., Zweigart, S. L. Comparison of a continuous suture pattern with a simple interrupted pattern for enteric closure in dogs and cats: 83 cases (1991-1997). Journal of the American Veterinary Medical Association. 214 (10), 1507-1510 (1999).
  21. Heneghan, C. P. H., Thornton, C., Navaratnarajah, M., Jones, J. G. Effect of isoflurane on the auditory evoked response in man. BJA: British Journal of Anaesthesia. 59 (3), 277-282 (1987).
  22. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomenal. Physiological Reviews. 65 (1), 37-100 (1985).

Tags

发育生物学,第156期,视觉皮层,单眼剥夺,临界期,眼部支配性可塑性,发育,定向调谐
小鼠主视觉皮质中的单眼视觉剥夺和眼部优势可塑性测量
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Chen, K., Zhao, Y., Liu, T., Su, Z., More

Chen, K., Zhao, Y., Liu, T., Su, Z., Yu, H., Chan, L. L. H., Liu, T., Yao, D. Monocular Visual Deprivation and Ocular Dominance Plasticity Measurement in the Mouse Primary Visual Cortex. J. Vis. Exp. (156), e60600, doi:10.3791/60600 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter