Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Cancer Research

קביעת מודל נומוגרמה רגרסיה סיכון מתחרה עבור נתוני הישרדות

doi: 10.3791/60684 Published: October 23, 2020

Summary

מוצג כאן הוא פרוטוקול לבנות nomograms המבוסס על מודל רגרסיה מפגעים פרופורציונליים קוקס מודל רגרסיה סיכון מתחרה. השיטה המתחרה היא שיטה רציונלית יותר ליישם כאשר אירועים מתחרים נוכחים בניתוח ההישרדות.

Abstract

שיטת קפלן-מאייר ומודל הרגרסיה של מפגעים יחסיים קוקס הם הניתוחים הנפוצים ביותר במסגרת ההישרדות. אלה הם יחסית קל להחיל ולפרש ותו לא ניתן לתאר חזותית. עם זאת, כאשר קיימים אירועים מתחרים (למשל, תאונות לב וכלי דם וכלי דם, מקרי מוות הקשורים לטיפול, תאונות דרכים), יש ליישם את שיטות ההישרדות הסטנדרטיות בזהירות, ולא ניתן לפרש כראוי נתונים מהעולם האמיתי. ייתכן שיהיה רצוי להבחין בין סוגים שונים של אירועים שעשויים להוביל לכישלון ולהתייחס אליהם באופן שונה בניתוח. כאן, השיטות מתמקדות בשימוש במודל הרגרסיה המתחרה כדי לזהות גורמים פרוגנוסטיים משמעותיים או גורמי סיכון כאשר קיימים אירועים מתחרים. בנוסף, nomograms המבוסס על מודל רגרסיה מפגע פרופורציונלי מודל רגרסיה מתחרה הוקמו כדי לסייע לרופאים לבצע הערכות בודדות ושכבות סיכון על מנת להסביר את ההשפעה של גורמים שנויים במחלוקת על פרוגנוזה.

Introduction

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

הזמן לניתוח הישרדות אירוע הוא די נפוץ במחקרים קליניים. נתוני הישרדות מודדים את טווח הזמן מזמן ההתחלה ועד להתרחשות אירוע העניין, אך התרחשות אירוע העניין לעתים קרובות מונעת על-ידי אירוע אחר. אם קיים יותר מסוג אחד של נקודת סיום, הם נקראים נקודות קצה של סיכונים מתחרים. במקרה זה, ניתוח הסיכון הסטנדרטי (כלומר, מודל מפגעים ספציפיים לסיבה ספציפית קוקס קוקס) לעתים קרובות לא עובד טוב כי אנשים חווים סוג אחר של אירוע מצונזרים. אנשים החווים אירוע מתחרה נשארים לעתים קרובות בסיכון שנקבע, מכיוון שהסיכונים המתחרים אינם בדרך כלל עצמאיים. לכן, פיין וגריי1 חקרו את הערכת מודל הרגרסיה עבור התפלגות המשנה של סיכון מתחרה. בהגדרת סיכון מתחרה, ניתן להפלות שלושה סוגים שונים של אירועים.

אחד מודד את ההישרדות הכוללת (OS) על ידי הדגמת יתרון קליני ישיר משיטות טיפול חדשות למחלה. מערכת ההפעלה מודדת את זמן ההישרדות מזמן המוצא (כלומר, זמן האבחון או הטיפול) לזמן המוות עקב כל סיבה ובדרך כלל מעריכה את הסיכון המוחלט למוות, ובכך אינה מבדילה בין הסיבות למוות (לדוגמה, מוות ספציפי לסרטן (CSD) או מוות שאינו ספציפי לסרטן (שאינו CSD))2. מערכת ההפעלה נחשבת, אם כן, לנקודת הקצה החשובה ביותר. אירועי עניין קשורים לעתים קרובות לסרטן, בעוד אירועים שאינם ספציפיים לסרטן, הכוללים מחלות לב, תאונות דרכים או גורמים אחרים שאינם קשורים, נחשבים אירועים מתחרים. חולים ממאירים עם פרוגנוזה חיובית, אשר צפויים לשרוד זמן רב יותר, נמצאים לעתים קרובות בסיכון גבוה יותר של שאינם CSD. כל כך, מערכת ההפעלה תדולל על ידי סיבות אחרות למוות ולא תפרש כראוי את היעילות האמיתית של הטיפול הקליני. לכן, מערכת ההפעלה לא יכול להיות המדד האופטימלי לגישה לתוצאות של מחלה3. הטיות כאלה יכולות להיות מתוקנות על ידי מודל רגרסיה סיכון מתחרה.

ישנן שתי שיטות עיקריות לנתוני סיכון מתחרים: מודלים ספציפיים לסיכון (דגמי קוקס) ומודלים של סכנות תת-הפצה (דגמים מתחרים). בפרוטוקול הבא, אנו מציגים שתי שיטות ליצירת nomograms בהתבסס על מודל הסיכון הספציפי לסיבה ומודל הסיכון של תת-הפצה. מודל הסיכון הספציפי לסיבה יכול להיעשות כדי להתאים את מודל הסכנות הפרופורציונליות קוקס, אשר מתייחס לנושאים החווים את האירוע המתחרה כמצונזר בזמן האירוע המתחרה התרחש. במודל סיכון ההפצה שהוצג על ידי Fine ו-Gray1 בשנת 1999, ניתן להפלות שלושה סוגים שונים של אירועים, ואנשים החווים אירוע מתחרה נשארים בסיכון שנקבע לנצח.

נומוגרמה הוא ייצוג מתמטי של הקשר בין שלושה משתנים או יותר4. נומוגרמות רפואיות מחשיבות אירוע ביולוגי וקליני כמשתנים (למשל, דרגת גידול וגיל המטופל) ומייצרות הסתברויות לאירוע קליני (למשל, הישנות סרטן או מוות) שמתואר גרפית כמודל פרוגנוסטי סטטיסטי לאדם נתון. בדרך כלל, nomogram מנוסח בהתבסס על התוצאות של קוקסמפגעים פרופורציונליים מודל 5,,6,,7,,8,,9,,10.

עם זאת, כאשר קיימים סיכונים מתחרים, נומוגרמה המבוססת על מודל קוקס עלולה להיכשל בביצועים טובים. למרות מספר מחקריםקודמים 11,12,13,14 יש להחיל את nomogramסיכון מתחרה כדי להעריך את ההסתברות של CSD, מחקרים מעטים תיארו כיצד לבסס את nomogram מבוסס על מודל רגרסיה סיכון מתחרה, ואין חבילה קיימת זמינה כדי להשיג את זה. לכן, השיטה המוצגת להלן תספק פרוטוקול שלב אחר שלב כדי לבסס נומוגרמה ספציפית בסיכון מתחרה המבוססת על מודל רגרסיה סיכון מתחרה, כמו גם הערכת ציון סיכון כדי לסייע לרופאים בקבלת החלטות טיפול.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

פרוטוקול המחקר אושר על ידי ועדת האתיקה של בית החולים ג'ינהואה, בית הספר לרפואה של אוניברסיטת ג'ה-ג'יאנג. עבור ניסוי זה, המקרים הושגו ממסד הנתונים מעקב, אפידמיולוגיה ותוצאות קצה (SEER). SEER הוא מסד נתונים עם גישה פתוחה הכולל נתונים דמוגרפיים, מקרי שכיחות והישרדות מ-18 רישומי סרטן מבוססי אוכלוסין. נרשמנו באתר האינטרנט של SEER וחתמנו על מכתב הבטחה לרכישת נתוני המחקר (12296-נובמבר 2018).

1. מקור נתונים

  1. השג אירועים ממאגרי הנתונים ותרשה (אם בכלל) להשתמש במקרים מהרישומים.
    הערה: נתוני ההתקוטה מועלות בקובץ משלים 1. קוראים שכבר יש להם נתוני הישרדות עם סיכונים מתחרים יכולים לדלג על סעיף זה.

2. התקנה וטעינה של חבילות וייבוא נתונים

הערה: בצע את ההליכים הבאים בהתבסס על תוכנת R (גירסה 3.5.3) באמצעות חבילות rms15 ו- cmprsk16 (http://www.r-project.org/).

  1. התקן חבילות rms ו- cmprsk R.
    >התקן.חבילות("rms")
    >התקן.חבילות("cmprsk")
  2. טען את חבילות ה-ר'.
    >ספריה("rms")
    >ספריה("cmprsk")
  3. יבא את נתוני הקוהורטה.
    >Dataset<-read.csv(".../Cohort Data.csv") # נתוני קוהורטה הם הדוגמה

3. נומוגרמה המבוססת על מודל הרגרסיה של הסכנות הפרופורציונליות קוקס

  1. לבסס את מודל הרגרסיה של הסכנות הפרופורציונליות קוקס.
    הערה: המשתנים העצמאיים (X) כוללים משתנים קטגוריים (משתני דמה, כגון race) ומשתנים רציפים (כגון גיל). הגורמים המשמעותיים בניתוח הבלתי ניתן להפעלה ייבחרו לשימוש בניתוח רב-תאריכים.
    1. להתאים את מודל הסכנות הפרופורציונליות קוקס לנתונים. צור את מודל רגרסיה קשיחה קוקס פרופורציונלי באמצעות cph הפונקציה. התבנית המפשטת ב- R מוצגת להלן:
      > f0 <- cph (Surv (הישרדות, מצב) ~ פקטור1+ פקטור2+...,
      x=T, y=T, surv=T, נתונים=ערכת נתונים)
      הערה: המוות הוגדר כמצב בקוד לדוגמה.
  2. לפתח Nomogram רגרסיה קוקס באמצעות הפקודות המפורטות להלן.
    > שם <- nomogram(f0, fun = רשימה (פונקציה(x) surv(24, x)...), funlabel =c("2 שנים צפוי הישרדות"...), maxscale = 100, fun.at)
    > עלילה (שם)
    הערה: קח את שיעור ההישרדות החזוי למשך שנתיים כדוגמה.

4. נומוגרמה המבוססת על מודל רגרסיה של סיכונים מתחרים

  1. בסס את מודל רגרסיה של סיכונים מתחרים.
    1. התאם למודל רגרסיה של סיכונים מתחרים. הקוראים יכולים לכלול את הגורמים החשובים להם, ניתן לדלג על שלב זה. בדוגמה, נכללים הגורמים המשמעותיים בניתוח הבלתי ניתן לעיבר.
      הערה: משתנה הצנזורה מקודד כ- 1 עבור אירוע עניין וכ- 2 עבור אירוע הסיכון המתחרה. כדי להקל על הניתוח, Scrucca ואח'. 17 לספק פקטור פונקציה R2ind(), אשר יוצר מטריצה של משתני אינדיקטור מגורם.
    2. עבור משתנים חד משמעיים, קוד אותם בקפידה באופן מספרי בעת הכללתם במודל המתחרה. כל כך, עבור משתנה קטגורי עשוי רמות J, ליצור משתני דמה J-1 או משתני מחוון.
    3. כדי לבסס מודל רגרסיה של סיכונים מתחרה, במקום הראשון משתנים פרוגנוסטיים לתוך מטריצה. השתמש בפונקציה cbind() כדי ליישר את המשתנים לפי עמודות ולהתאים אותם למודל הרגרסיה המתחרה.
      >x <-cbind (פקטור1, "1"), factor2ind (פקטור2, "1")...)
      > mod<- crr (הישרדות, fstatus, failcode = 1 או 2, cov1 =x)
  2. התווה את הנומוגרמה המתחרה
    הערה: ערך הביתא (β ערך) הוא מקדם רגרסיה של מגוון (X) בנוסחה של רגרסיה מפגעים יחסיים Cox. X.score (השפעה מקיפה של המשתנה התלוי) ו- X.real (בנקודות זמן מיוחדות, לדוגמה, 60 חודשים, כדי לחזות את פונקציית השכיחות המצטברת) מחושבים מתוך מודל רגרסיה Cox ולאחר מכן, נומוגרמה נוצרת.
    1. השתמש nomogram הפונקציה כדי לבנות קוקס שם בשם (כפי שרשום בשלב 3.2).
    2. החלף את X.beta ו- X.point גם את total.points, X.real ו-X.score של מודל רגרסיה של סיכונים מתחרים.
      1. קבל את ה-cif הבסיסי, כלו cif(דקות). לקבלת פרטים, ראה קובץ משלים 2.
        > x0=x
        > x0 <- as.matrix(x0)
        > lhat <- מטריקס(0, nrow = אורך (mod$uftime), ncol = nrow(x0))
        > עבור (j ב 1:nrow(x0)lhat[, j] <- cumsum(exp(x0[j] * mod$coef)) * mod$bfitj)
        > להט <- cbind (mod$uftime, 1 - exp(-lhat))
        > רכב שטח<-as.data.frame(lhat)
        > colnames(suv)<- c("זמן")
        > קו 24<-אשר (suv$זמן =="24")
        ב-2014, לאחר ש-2015, לאחר ש
      2. החלף את X.beta ו- X.point.
        > lmaxbeta<------------max(abs(mod$coef))
        > maxbeta<-abs (mod$coef[lmaxbeta])
        > מרוץ0<-0
        > שמות(race0)<--"race:1"
        > race.beta<-c(race0,mod$coef["race:2",race:3"))
        ב-2015, לאחר ש-10000 00:00,000 --> 00:00:00,000 --> 00:00:00,000 --> 00:00:0
        ב-2015, לאחר ש
        > קנה מידה>-(race.beta1/maxbeta*100) # אופן חישוב קנה המידה
        > נום$גזע$Xbeta<-race.beta1
        > נום$גזע$נקודות<-race.scale
        הערה: קח את המירוץ כדוגמה.
      3. החלף את סך X.point ו- X.real.
        > נום$total.points$x<-c(0,50,100, ...)
        > ריאל.2y<-c(0.01,0.1,0.2,...)
        הערה: החלפות הן בהתאם לערך המינימקס.
      4. חשב את ה-X.score והתווה את הנומוגרמה.
        > ציון.2y<-log((1-real.2y),(1-cif.min24))/(maxbeta/100)
        > נום$'2-$x של הישרדות<-score.2y
        > נום$'2-$x הישרדות.אמיתי<-real.2y
        > נום$'2 שנים של $fat<-as.character(real.2y)
        > עלילה(שם)
        הערה: X.score=log((1-X.real),(1-cif0))/(maxbeta/100). ניתן לחשב את המשוואות עבור מערכת היחסים X.score ו- X.real בהתאם לייחוס הפנימי של המודל המתחרה(crr). Cif0 פירושו cif בסיסי, אשר יחושב על-ידי הפונקציה predict.crr.

5. ניתוח קבוצת משנה בהתבסס על ציון הסיכון הקבוצתי (GRS)

  1. חישוב ציון הסיכון (RS)
    הערה: חשב את ציון הסיכון עבור כל מטופל על-ידי סך הנקודות של כל משתנה. ערכי חיתוך משמשים לסווג את ההתנתקות. אם לוקחים שלוש קבוצות משנה כדוגמה, השתמש במטה החבילה כדי לצייר חלקת יער.
    1. התקנה וטעינה של חבילות R
      > להתקין.חבילות("מטה")
      > ספריה("meta")
    2. השג את ה- GRS וחלק את החבורה ל- 3 קבוצות משנה.
      > d1<-ערכת נתונים
      > d1$X<-nom$X$points
      > #For, d1$race[d1$race===1]<-nom$race$point[1]
      > d1$RS<-d1$race + d1$marry + d1$היאסטולוגיה + d1$gradesmodify + d1$T סיווג + d1$Nclassification
      > d1$GRS<- לחתוך (d1$RS, quantile(d1$RS, seq(0, 1,1/3)), לכלול.הנמוך ביותר = TRUE, תוויות = 1:3)
    3. צייר את חלקת היער. קבל את משאבי אנוש, LCI ו UCI באמצעות crr הפונקציה.
      > תת-קבוצה<-crr(ftime, fstatus, cov1, failcode =1)
      > משאבי אנוש<- סיכום (קבוצת משנה)$conf.int[1]
      > LCI<- סיכום (קבוצת משנה)$conf.int[3]
      > UCI<- סיכום (קבוצת משנה)$conf.int[4]
      > LABxx<-c ("סיכון נמוך", "סיכון חציוני", "סיכון גבוה")
      > xx<-metagen(יומן(HR), נמוך יותר = log (LCI), עליון = יומן (UCI), studlab = LABxx, sm = "HR")
      > יער (xx, col.square = "שחור", hetstat =TRUE, leftcols = "studlab")

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

מאפייני ההישרדות של קוהורטה לדוגמה
בדוגמה cohort, בסך הכל 8,550 חולים זכאים נכללו בניתוח ואת זמן המעקב החציוני היה 88 חודשים (טווח, 1 עד 95 חודשים). סה"כ 679 (7.94%) החולים היו צעירים יותר מ-40 ו-7,871 (92.06%) החולים היו מעל גיל 40. בסוף המשפט, 7,483 (87.52%) החולים היו עדיין בחיים, 662 (7.74%) נפטר בגלל סרטן השד, ו 405 (4.74%) חולים מתו בגלל סיבות אחרות (סיכונים מתחרים).

השוואה בין שני מודלי הישרדות
השכיחות המצטברת של מוות גידול / אין מוות גידול ואירועים מתחרים חושבו על ידי שיטת קפלן-מאייר ואת פונקציית רגרסיה סיכון מתחרה, בהתאמה (מוצג באיור 1). כפי שממוצג באיור 1 , סכום המקריםהמצטברים של מוות מגידול ואין מוות גידול כפי שחושב על ידי שיטת קפלן-מאייר היה גבוה יותר מסכום ההערכות של כל הסיבות למוות, שהיה שווה לשכיחות המצטברת של CSD כאשר השיטה המתחרה שימשה. ברור, שיטת קפלן-מאייר הקצתה יתר על המידה את השכיחות המצטברת של מוות מגידול ולא מוות מגידול. השיטה המתחרה יכולה לתקן את הערכתה המנוגזת של ההסתברות למוות.

נומוגרמה המבוססת על מודל הרגרסיה של הסכנות הפרופורציונליות של קוקס
נומוגרמה נבנתה בהתבסס על גורמים משמעותיים כפי שמראה באות 2A ובטבלה 1. זה כלל מצב משפחתי, גזע, סוג היסטולוגי, כיתה מובדילה, סיווג T, סיווג N.

נומוגרמה המבוססת על מודל רגרסיה של סיכונים מתחרים
נומוגרמה מתחרה המבוססת על מספר גורמים, לרבות גזע, מצב משפחתי, סוג היסטולוגי, ציון דיפרנציאלי, סיווג T סיווג N(איור 2B). מקדם הביתא מהמודל שימשו להקצאת קנה מידה (טבלה 1).

ניתוח ריבוד לפי ציון הסיכון
בהתבסס על ציון הסיכון, החבורה סווגה לשלוש קבוצות משנה: ציון סיכון נמוך: 0-44; ציון סיכון בינוני: 45-85; וציון בסיכון גבוה: 86-299. חלקת היער יכולה להציג בבירור את האינטראקציה בין ה-GRS לבין הגורם הספציפי (איור3). בהתבסס על סיווג GRS, הפרוגנוזה הגרועה יותר של נשים צעירות הופיעה רק בקבוצת משנה בסיכון נמוך וגיל צעיר עשוי לשמש גורם מגן של פרוגנוזה בקבוצות משנה בינוניות ובסיכון גבוה.

Figure 1
איור 1: התוויית שכיחות מצטברת מוערמת. K-M: מקרים מצטברים על פי הערכות קפלן-מאייר; CR: מקרים מצטברים בהתבסס על הערכות סיכון מתחרות שכיחות מצטברת; מוות גידול + אין מוות גידול (K-M): סכום ההערכות של השכיחות המצטברת של מוות ספציפי לסרטן ומוות ספציפי שאינו סרטן; CSD + לא CSD (CR): סכום ההערכות של מוות ספציפי לסרטן ומוות שאינו ספציפי לסרטן כאשר נעשה שימוש בשיטת CR. לחץ כאן כדי להציג גירסה גדולה יותר של נתון זה.

Figure 2
איור 2: נומוגרם של מודל רגרסיה של מפגעים יחסיים קוקס ומודל רגרסיה סיכון מתחרה. (א)Nomogram המבוסס על מודל רגרסיה מפגעים פרופורציונליים קוקס. נומוגרמהמבוססת על מודל רגרסיה של סיכונים מתחרים. עבור יישום הנומוגרם, כל ציר משתנה מציג גורם סיכון בודד, והקו הנמשך כלפי מעלה משמש לקביעת הנקודות של כל משתנה. לאחר מכן, הנקודות הכולל מחושבות כדי לקבל את ההסתברות של 2-, 3- ו 5 שנים ספציפי לסרטן הישרדות או פונקציית שכיחות מצטברת (CIF). מירוץ: 1=לבן, 2=שחור, 3=אחר; מצב משפחתי: 1=נשוי, 2= רווק (מעולם לא נשוי או בן זוג ביתי), 3= גרוש (פרוד, גרוש, אלמן); סוג היסטולוגי: 1 = סרטן צינור הסתנן, 2 = סרטן lobular חודר, 3 = חודר צינור קרצינומה lobular; גידול כיתה: 1 = גם בונידול, 2 = ביהור מתון; 3= בידול גרוע. סיווג T ו-N היה על פי מערכת ההיערכות ה-7 של AJCC TNM. לחץ כאן כדי להציג גירסה גדולה יותר של נתון זה.

Figure 3
איור 3: מגרש יער של ניתוח ריבוד לפי ציון הסיכון להסתברות למוות ספציפי לסרטן השד בנשים צעירות ומבוגרות עם סרטן השד. לחץ כאן כדי להציג גירסה גדולה יותר של נתון זה.

(משאבי אנוש: יחס סיכון)

משתנים הציון
(מודל קוקס)
פרוצ'ות מוערכת הציון
(מודל מתחרה)
פרוצ'ות מוערכת
המירוץ
1:לבן 10 4
2:שחור 32 31
3:אחר 0 0
מצב משפחתי
1:נשוי 0 0
2:לא ננו 9 5
3:גרושים 37 15
היסטולוגיה
1:אדנוקרצינומה 10 12
2:אדנוקרצינומה של מריר 8 5
3:קרצינומה של תא טבעת רינג 0 0
ציון דיפרנציאלי
1:כיתה א' 0 0
2:כיתה ב' 6 36
3:כיתה ג' 37 77
סיווגT
1:T1 (1) 0 0
2:T2 41 50
3:T3 59 68
4:T4 (12:4) 100 98
N סיווגa
00:00 0 0
1:0-3 17 42
2:3-6 43 65
3:6-12 74 100
ציון כולל
(הישרדות של שנתיים)
278 0.6 ציון כולל
(CIF שנתיים)
95 0.01
254 0.7 233 0.1
223 0.8 277 0.2
173 0.9 305 0.3
125 0.95 326 0.4
344 0.5
ציון כולל
(הישרדות של 3 שנים)
281 0.4 ציון כולל
(CIF ל-3 שנים)
62 0.01
242 0.6 245 0.2
218 0.7 293 0.4
187 0.8 311 0.5
137 0.9 328 0.6
89 0.95 344 0.7
ציון כולל
(הישרדות של 5 שנים)
303 0.1 ציון כולל
(CIF ל-5 שנים)
29 0.01
279 0.2 212 0.2
241 0.4 260 0.4
203 0.6 295 0.6
179 0.7 328 0.8
148 0.8 349 0.9
98 0.9
50 0.95
a סיווג T ו-N על פי מערכתההיערכות של AJCC 7
CIF: פונקציית שכיחות מצטברת

טבלה 1: הקצאת נקודות וציון פרוגנוסטי ב nomogram בהתבסס על קוקס מודל רגרסיה מפגעים פרופורציונליים מודל רגרסיה סיכון מתחרה.

קובץ משלים 1. אנא לחץ כאן כדי להוריד קובץ זה. 

קובץ משלים 2. אנא לחץ כאן כדי להוריד קובץ זה. 

קובץ משלים 3. אנא לחץ כאן כדי להוריד קובץ זה. 

Subscription Required. Please recommend JoVE to your librarian.

Discussion

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

המטרה הכוללת של המחקר הנוכחי הייתה להקים נומוגרמה ספציפית בסיכון מתחרה שיכול לתאר מחלות בעולם האמיתי ולפתח מודל הערכה אישי נוח עבור רופאים לגשת להחלטות טיפול. כאן, אנו מספקים ערכת לימוד שלב אחר שלב להקמת nomograms המבוסס על מודל רגרסיה קוקס מודל רגרסיה סיכון מתחרה וביצוע נוסף ניתוח תת קבוצה. ג'אנג ואח'18 הציג גישה כדי ליצור nomogram סיכון מתחרה, אבל הרעיון העיקרי של המתודולוגיה המתוארת בעיתון הוא שונה לחלוטין. השיטות של ג'אנג ואח' שינו תחילה את הנתונים המקוריים לנתונים משוקללים על-ידי הפונקציה crprep() בחבילת mstate 19, ולאחר מכן ציירו את הנומוגרמה על-ידי חבילת rms. עם זאת, מושג הליבה של השיטה שונה לחלוטין מזה. במילים פשוטות, אנו מחליפים את הפרמטרים שנוצרו על ידי cph עם התוצאה של crr פונקציה ולאחר מכן לצייר nomogram סיכון מתחרה במסגרת של nomogram קוקס. בשיטה זו, nomogram קוקס הוא יותר כמו מסגרת.

חולים ממאירים עם פרוגנוזה חיובית אשר צפויים להיות הישרדות ארוכה יותר עם סרטן נמצאים בסיכון גבוה יותר של מוות שאינו ספציפי לסרטן. מערכת ההפעלה שלהם תדולל במידה רבה על ידי השכיחות של שאינם CSD, כפי שמאידך באיור 1. נטילת חולים עם סרטן המעיהגס שלב II 13 כדוגמה, אם אנחנו לא לוקחים בחשבון את הסיבות לסרטן ביצירת עקומות של כל הסיבות למוות על פי שיטת קפלן-מאייר, עקומות כאלה יושפעו במידה רבה על ידי השכיחות המצטברת של שאינם CSD ולא השכיחות המצטברת של CSD.

המודל הסטנדרטי קוקס להערכת covariates בהחלט יוביל לתוצאות שגויות ומשוחדות (לדוגמה, עבור כימותרפיה בשלב II סרטן המעיהגס 13, כימותרפיה היה גורם מגן עבור מערכת ההפעלה). ניתן לתקן את ההטיה על ידי שיטת רגרסיה סיכון מתחרה, במיוחד עבור תת הקבוצה העתיקה ביותר (כימותרפיה תוגדר כגורם מזיק עבור CSD). האירוע שאינו CSD הוא סיכון מתחרה בלתי ניתן לגליגלי בחולים עם סרטן, במיוחד עבור אלה עם פרוגנוזה חיובית.

ואז, לאחר שהקמנו נומוגרמה, ההסתברות למוות הקשורה לכל משתנה הוצגה כנקודה על הנומוגרמה. ציון הסיכון עבור כל מטופל חושב על ידי סך הנקודות של כל המשתנים. בהתבסס על הציון הכולל, אנחנו יכולים להמשיך לחלק את החבורה לשלוש תת קבוצות (נמוך, בינוני, גבוה) כדי שכבות ההשפעה של גורמים שנויים במחלוקת על פרוגנוזה, אשר עשוי להיות מועיל עבור רופאים לפתור בעיות קליניות. קח את ההשפעה של גיל על סרטן השד כדוגמה20. ההשפעה של גיל על התוצאות של חולים עם סרטן השד מוקדם לא הוקמה קלינית והוא שנוי במחלוקת. בהתבסס על סיווג GRS, הפרוגנוזה הגרועה יותר של נשים צעירות הופיעה רק בקבוצות משנה בסיכון נמוך ובינוני, וגיל צעיר עשוי לשמש כגורם מגן של פרוגנוזה.

במונחים של מגבלות, אומדן הסיכון המתחרה עלול להוביל לתחרות יתר במצבים מסוימים21. לדוגמה, מחלות עם פרוגנוזה גרועה (כגון גידולים ממאירים מתקדמים או סרטן הלבלב השונה עניים) ורעילות גדולה תהיה בהכרח השפעות דומיננטיות על שאינם CSD. אם מודל קוקס או מודל רגרסיה פרופורציונלית תת-הפצה (סיכון מתחרה) צריך להיות מיושם בניתוח הישרדות יש לשקול בזהירות. הן שאינן CSD והן מעל תחרות יש להתייחס בזהירות כאשר הישרדות מוערכת. בהתבסס על התוצאות, אנו מציעים כי עבור מחלות עם פרוגנוזה טובה וחולים עם זקנה, ההשפעה של שאינם CSD על מערכת ההפעלה יש לשקול בזהירות בניסויים קליניים עתידיים. CSD, המבוסס על מודל סיכון מתחרה, עשוי להיות נקודת קצה חלופית במקום תמיד להשתמש ב- OS המסורתית.

לסיכום, אנו מציעים כי לא רק גידולים ממאירים עם פרוגנוזה שונה, אלא גם אותה מחלה עם שלבים שונים עשוי לדרוש את הבחירה הפרטנית של נקודת קצה מתאימה. בנוסף, מתודולוגיה זו יכולה לשמש כדי לבסס נומוגרמה המבוססת על המודל הנכון (קוקס או מודל רגרסיה מתחרה) לכמת את הסיכון, אשר יכול לשמש עוד יותר עבור הדרכה אישית, כמו גם להסביר טוב יותר תופעות קליניות בפועל קליני.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

ללא

Acknowledgments

המחקר נתמך על ידי מענקים מהתוכנית הכללית של הקרן למדעי הטבע במחוז ג'ה-ג'יאנג (להעניק מספר LY19H160020) ותכנית מפתח של הלשכה למדע וטכנולוגיה עירונית Jinhua (מענק מספר 2016-3-005, 2018-3-001d ו 2019-3-013).

Materials

Name Company Catalog Number Comments
no no no

DOWNLOAD MATERIALS LIST

References

  1. Fine, J. P., Gray, R. J. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 94, (446), 496-509 (1999).
  2. Fu, J., et al. Real-world impact of non-breast cancer-specific death on overall survival in resectable breast cancer. Cancer. 123, (13), 2432-2443 (2017).
  3. Kim, H. T. Cumulative incidence in competing risks data and competing risks regression analysis. Clinical Cancer Research. 13, 2 Pt 1 559-565 (2007).
  4. Balachandran, V. P., Gonen, M., Smith, J. J., DeMatteo, R. P. Nomograms in oncology: more than meets the eye. Lancet Oncology. 16, (4), 173-180 (2015).
  5. Han, D. S., et al. Nomogram predicting long-term survival after d2 gastrectomy for gastric cancer. Journal of Clinical Oncology. 30, (31), 3834-3840 (2012).
  6. Karakiewicz, P. I., et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. Journal of Clinical Oncology. 25, (11), 1316-1322 (2007).
  7. Liang, W., et al. Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer. Journal of Clinical Oncology. 33, (8), 861-869 (2015).
  8. Valentini, V., et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. Journal of Clinical Oncology. 29, (23), 3163-3172 (2011).
  9. Iasonos, A., Schrag, D., Raj, G. V., Panageas, K. S. How to build and interpret a nomogram for cancer prognosis. Journal of Clinical Oncology. 26, (8), 1364-1370 (2008).
  10. Chisholm, J. C., et al. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. Journal of Clinical Oncology. 29, (10), 1319-1325 (2011).
  11. Brockman, J. A., et al. Nomogram Predicting Prostate Cancer-specific Mortality for Men with Biochemical Recurrence After Radical Prostatectomy. European Urology. 67, (6), 1160-1167 (2015).
  12. Zhou, H., et al. Nomogram to Predict Cause-Specific Mortality in Patients With Surgically Resected Stage I Non-Small-Cell Lung Cancer: A Competing Risk Analysis. Clinical Lung Cancer. 19, (2), 195-203 (2018).
  13. Fu, J., et al. De-escalating chemotherapy for stage II colon cancer. Therapeutic Advances in Gastroenterology. 12, 1756284819867553 (2019).
  14. Chen, D., Li, J., Chong, J. K. Hazards regression for freemium products and services: a competing risks approach. Journal of Statistical Computation and Simulation. 87, (9), 1863-1876 (2017).
  15. Frank, E., H, J. rms: Regression Modeling Strategies. R package version 5.1-2. Available from: https://CRAN.R-project.org/package=rms (2018).
  16. Gray, B. cmprsk: Subdistribution Analysis of Competing Risks. R package version 2.2-7. Available from: https://CRAN.R-project.org/package=cmprsk (2014).
  17. Scrucca, L., Santucci, A., Aversa, F. Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplantation. 45, (9), 1388-1395 (2010).
  18. Zhang, Z., Geskus, R. B., Kattan, M. W., Zhang, H., Liu, T. Nomogram for survival analysis in the presence of competing risks. Annals in Translational Medicine. 5, (20), 403 (2017).
  19. Geskus, R. B. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring. Biometrics. 67, (1), 39-49 (2011).
  20. Fu, J., et al. Young-onset breast cancer: a poor prognosis only exists in low-risk patients. Journal of Cancer. 10, (14), 3124-3132 (2019).
  21. de Glas, N. A., et al. Performing Survival Analyses in the Presence of Competing Risks: A Clinical Example in Older Breast Cancer Patients. Journal of the National Cancer Institute. 108, (5), (2016).
קביעת מודל נומוגרמה רגרסיה סיכון מתחרה עבור נתוני הישרדות
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Wu, L., Ge, C., Zheng, H., Lin, H., Fu, W., Fu, J. Establishing a Competing Risk Regression Nomogram Model for Survival Data. J. Vis. Exp. (164), e60684, doi:10.3791/60684 (2020).More

Wu, L., Ge, C., Zheng, H., Lin, H., Fu, W., Fu, J. Establishing a Competing Risk Regression Nomogram Model for Survival Data. J. Vis. Exp. (164), e60684, doi:10.3791/60684 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter