Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

バイタル顕微鏡によるゼブラフィッシュ胚におけるマイコバクテリア感染時のマクロファージ溶解細胞死の可視化

Published: January 9, 2019 doi: 10.3791/60698

Summary

このプロトコルは、マイコバクテリウム・マリナム感染時の胚性ゼブラフィッシュにおけるマクロファージ挙動および死を可視化する技術を記述する。細菌の調製、胚の感染、およびバイタル内顕微鏡検査のステップが含まれています。この技術は、感染または無菌炎症を伴う同様のシナリオにおける細胞行動および死亡の観察に適用され得る。

Abstract

ゼブラフィッシュは、その透明な性質と初期の発達中の自然免疫系のみに依存しているため、自然免疫細胞の挙動を研究するための優れたモデル生物です。ゼブラフィッシュマイコバクテリウム・マリナム(M.マリナム)感染モデルは、マイコバクテリア感染に対する宿主免疫応答の研究において十分に確立されている。異なるマクロファージ細胞死の種類は、マイコバクテリア感染の多様な結果につながることが示唆されている。ここでは、M.マリナム感染後のゼブラフィッシュ胚におけるマクロファージ細胞死を観察するために、生内顕微鏡を用いたプロトコルについて説明する。マクロファージと好中球を特異的に標識するゼブラフィッシュトランスジェニックラインは、中脳または幹のいずれかで蛍光標識M.marinumの筋肉内マイクロインジェクションを介して感染する。感染したゼブラフィッシュ胚は、その後、低融解アガロースに取り付けられ、X-Y-Z-T次元の共焦点顕微鏡によって観察される。長期ライブイメージングでは、光漂白や光毒性を避けるために低いレーザーパワーを使用する必要があるため、トランスジェニックを強く表現することを強くお勧めします。このプロトコルは、免疫細胞遊走、宿主病原体相互作用、および細胞死を含む生体内の動的プロセスの可視化を容易にする。

Introduction

マイコバクテリア感染は、宿主免疫細胞死1を引き起こすことが実証されている。例えば、減衰した株はマクロファージ中のアポトーシスを引き起こし、感染を含む。しかし、毒性株は、溶解細胞死を引き起こし、細菌の播種引き起こす1、2.これらの異なるタイプの細胞死が宿主抗抗抗抗抗抗細菌応答に及ぼす影響を考慮すると、生体内でのマイコバクテリア感染時のマクロファージ細胞死の詳細な観察が必要である。

細胞死を測定する従来の方法は、Annnexin V、TUNEL、またはアクリジンオレンジ/ヨウ化プロピジウム染色3、4、5などの死細胞染色を使用することです。しかし、これらの方法は、生体内での細胞死の動的過程に光を当てることができません。インビトロでの細胞死の観察は、すでに生イメージング6によって促進されている。しかしながら、結果が生理学的条件を正確に模倣するかどうかは不明のままである。

ゼブラフィッシュは、宿主抗抗抗抗抗抗抗菌応答を研究するための優れたモデルである。それは人間と同様に高度に保存された免疫系を有し、容易に操作されるゲノム、および初期胚は透明であり、生きたイメージングを可能にする7、8、9を可能にするM.マリナムとの感染後、成人ゼブラフィッシュは典型的な成熟肉芽腫構造を形成し、胚性ゼブラフィッシュは構造9、10のような早期肉芽腫を形成する。自然免疫細胞間細菌相互作用の動的過程は、ゼブラフィッシュM.マリナム感染モデル11、12において以前に検討されている。しかし、空間的な時間分解能の要件が高いため、自然免疫細胞の死を取り巻く詳細はほとんど未定義のままである。

ここでは、生体内のマイコバクテリア感染によって引き起こされるマクロファージ溶解細胞死のプロセスを可視化する方法について説明する。このプロトコルはまた、発達および炎症の間に生体内の細胞行動を視覚化するために適用され得る。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

ゼブラフィッシュは、動物福祉の倫理的見直しのための実験動物ガイドラインに準拠して標準的な条件下で飼育されました (GB/T 35823-2018).本研究におけるゼブラフィッシュ実験は全て承認され(2019-A016-01)、復旦大学上海公衆衛生臨床センターで実施されました。

1. M. マリナム単細胞接種準備 (図 1)

  1. セルリアン蛍光M.マリナムグリセロールストックを-80°Cから解凍し、10%(v/v)OADC、0.25%グリセロールおよび50μg/mLハイグロマイシンを有する7H10寒天プレートを接種します。プレートを32°Cで約10日間インキュベートします。
  2. 陽性蛍光を発現するコロニーを選択し、10%OADC、0.5%グリセロール、および50μg/mLハイグロマイシンを有する7H9培地の3 mLを接種する。
    1. 培養が対数相(OD600 = 0.6~1.0)に達するまで、4~6日間、32°Cと100回転/分(rpm)で接種します。
    2. サブカルチャー(1:100)は、10%OADC、0.5%グリセロール、0.05%Tween-80、およびOD600が約1.0に達するまで50μg/mLの新鮮な7H9培地の30 mLで。
      注: 最高のカルチャ品質を得る場合は、この時点でサブカルチャーステップをお勧めします。私たちの経験では、クローンを大量の媒体に直接添加すると、細菌塊の形成につながります。
  3. 以下に説明するようにM.マリストム細胞を収集する。
    1. 3,000 x gで10分間遠心分離機を行い、M.マリナムをペレットとして回収する。上清の300°Lを除くすべてを捨て、ペレットの再サスペンドに使用します。
    2. 10%グリセロールで7H9培地の3 mLを追加し、ペレットをさらに再懸濁し、15 s ONで100 Wの水浴中の懸濁液を超音波処理し、合計2分間オフにします。
      注:超音波処理の目的は、マイクロインジェクション針の閉塞を防ぐ接種のための単一の細胞ホモジネートを達成することです。
  4. 細菌懸濁液を10mLシリンジに移し、5μmフィルターを通過して細菌塊を除去します。
  5. 分光光度計を用いて懸濁液の光学密度(OD)を測定し、10%グリセロールを含む7H9媒体でOD600 = 1.0に希釈します。懸濁液を10μLのアリコートに分割し、将来の使用のために-80°Cの冷凍庫で保存します。
  6. OADCの10%(v/v)、グリセロールの0.5%、ハイグロマイシンの50μg/mLを含む7H10寒天プレート上の細菌ストックの連続希釈およびめっきによって、接種液(cfu/mL)の細菌濃度を確認します。

2. ゼブラフィッシュ胚製剤

  1. 産卵の前日に、飼育室にゼブラフィッシュの繁殖ペアを設置します。
    注:各繁殖室に1組のみを追加します。
  2. 受精後1時間以内に翌朝胚を採取する。蒸留水で胚を慎重に洗浄し、E3培地30mLを含む100mmペトリ皿に最大100個の胚を移します。28.5 °Cでインキュベートします。
  3. 12時間後、顕微鏡で観察し、受精または損傷した卵を廃棄する。
  4. 24 hpfで、N-フェニルチウリア(PTU、0.2 nM最終濃度)で培地を新鮮なE3培地に変更し、顔料の発達を防ぎます。胚がマイクロインジェクションの準備ができるまで、28.5 °Cで胚をインキュベートします。

3. 細菌マイクロインジェクションによる感染

  1. 前述の参照13に記載されているようにホウケイ酸ガラスマイクロキャピラリー注射針を調製する。
  2. ゼブラフィッシュ胚感染用取り付け
    1. マイクロ波100mL1%(w/v)および100 mLの0.5%(w/v)低融解アガロースは、アガロースが完全に溶融するまでオートクレーブ化E3培地中で行う。1 mLのアリコートチューブに分け、4°Cで保存し、将来の使用のために使用します。
    2. 使用前に、アガロースを完全に溶かすまで95°加熱ブロックで加熱します。アガロースを45°Cの加熱ブロックに入れて液体の形で維持する(図2)。
    3. 幹領域における筋肉内感染の取り付け
      1. ガラスのスライドに0.5 mLの1%(w/v)アガロースを均等に注いで、底部アガロース層を作成します。氷箱または冷たい表面に3分間置いて固める。
      2. 卵水中のゼブラフィッシュ胚(48~72hpf)をトリカイン(200μg/mL)とPTUで取り付ける前に5分間麻酔します。下部アガロース層に最大60個のゼブラフィッシュ胚を配置し、慎重に2つの列にレイアウトします(図2B)。
      3. 0.5%(w/v)アガロースを加える前に、組織紙で下部アガロース層の残りの水を取り除き、上層を作成します。胚がアガロースに完全に埋め込まれていることを確認します。ガラスのスライドをもう一度アイスボックスに戻してアガロースを固め、脱水を防ぎます。
      4. 余分なE3卵の水で表面を覆うことによって、アガロースの最上層を湿らせておきます。
    4. 中脳感染症の取り付け
      1. 単一の凹面ガラス顕微鏡スライドの溝を1%(w/v)アガロースで覆い、4~6個のトリカイン麻酔胚をアガロースに移します。
      2. 各胚の頭部を10G針で慎重に上に置きます(図2C)。
      3. すべての胚の位置が固定されたら、ガラススライドを氷箱または冷たい表面に移してアガロースを固化させます。
        注:胚との卵水の移動量を最小限に抑えることによって、低融解アガロースの希釈を避けてください。
  3. 感染症に対する細菌の準備
    1. 滅菌濾過フェノールレッド(10x)を細菌ストックの10μLアリコート(ステップ1で作製)に加え、ボルテックスで簡単に混ぜます。
      注:最終濃度は滅菌PBSを使用して調整することができる。
    2. 10 s ON で 100 W を使用して準備を超音波処理し、10 s OFF を 1 分間使用して、14を形成した可能性のある塊を分割します。
  4. マイクロインジェクションによる感染
    1. マイクロインジェクターとマイクロマニピュレータを、以前に報告した13のようにマイクロインジェクションの適切な位置と設定に調整する。
    2. マイクロローダーを用いて細菌製剤の3μLを調製針に移す(ステップ3.1参照)。ピペットは、気泡を形成しないようにゆっくりと慎重に。
    3. トランク領域の感染については、100 cfu をトランク領域に注入します (図 3A)。ノトコードに細菌を注入することは避けてください。
      注:注射用cfuは、式cfu=細菌ストック濃度x希釈係数x注入液滴体積によって推定される。実際のcfuは、OADCの10%(v/v)、グリセロールの0.5%、および50μg/mLのハイグロマイシンを含む7H10寒天プレート上に細菌接種液を1滴めっきすることによって確認されます。
    4. 中脳感染の場合は、約500cfuを中脳領域に注入する(3B)。
    5. マイクロインジェクションの後、ゼブラフィッシュ胚をプラスチックピペットで新鮮な卵水に慎重に洗い流します。
      注:非常に初期の自然免疫細胞応答の観察をカバーするために、できるだけ早くガラス底皿に胚をマウントします。

4. 感染症の生きたイメージング

  1. ライブイメージング用魚の取り付け
    1. グラス底35mm皿の真ん中に最大10個のトリカイン麻酔胚を移します。余分な E3 メディアを破棄します。
    2. 1%低融点アガロースで皿をカバーし、10 G針を使用して慎重にゼブラフィッシュ胚の向きを付けます。グラス底皿を氷の上に10s入れ、アガロースを固める。
      注:中脳注射の場合、胚は頭を上向きにアガロースに取り付ける必要があります(図4A)。体幹領域の筋肉内感染の場合、胚はアガロースに横に取り付けるべきである(4B)。
    3. 完全に固化したら、アガロースを卵水の層(プラス1×トリカインとPTU)で覆います。
  2. 3色の高解像度タイムラプス共焦点顕微鏡
    注:以下のステップは、63.0x 1.40オイルUV対物レンズを搭載した共焦点顕微鏡で操作されます。
    1. 環境室の温度を28.5 °Cに設定します。湿気を与え、卵水の蒸発を防ぐために、室内にいくつかの湿ったティッシュペーパーを置きます(補足図1)。
    2. 環境室にゼブラフィッシュと35ミリメートルのガラス底皿を置きます。
    3. 共焦点ソフトウェアを開き、ステージを初期化します。63.0 x 1.40オイルUV目的に切り替え、差動干渉コントラスト(DIC)フィルタを使用して明視野チャネルを使用してゼブラフィッシュを見つけます。
    4. 405ダイオード、アルゴン(20%パワー)、およびDPSS 561 nmレーザーを開きます。適切なレーザーパワーとスペクトル設定を設定します。
      注: セルリアン(励起 = 405 nm;放出= ~456-499 nm)、eGFP(励起= 488 nm、発光= ~500~550 nm)、DsRed2(励起= 561 nm;放出=~575~645 nm)(補足図2B)のスペクトル設定を以下に示します。
    5. "XYZ" "シーケンシャル スキャン" 取得モードを選択し、イメージ形式を "512 x 512 ピクセル" に設定します (補足図 2A)。
    6. "ライブデータ モード" に切り替えます。最初のゼブラフィッシュの位置をターゲットにし、"Begin""End"Z の位置をマークします。残りの胚ごとにこのプロセスを繰り返します。プログラムの最後に "一時停止" を追加できます (補足図 2C)。
    7. プログラムのループとサイクルを定義します。
    8. ファイルを保存します。

5. アポトーシスとライブイメージングを誘導する単一細胞UV照射

  1. ステップ4.1の説明に従って魚をマウントします。
  2. 受精後3日間の中脳領域のイメージング(dpf)マクロファージ特異的トランスジェニックTg(mfap4-eGFP)15
  3. 1つの蛍光標識マクロファージの対象領域を選択し、400 Hz速度でスキャンし、50sの6%UVレーザーパワーをスキャンします。
    メモ:走査速度と時間は、個々の顕微鏡に基づいて最適化する必要があります。スキャン時間は、その後標的細胞アポトーシスを引き起こす広範なDNA損傷を引き起こすように最適化する必要がありますが、細胞全体をフォトブリーチすることはありません。
  4. 上記の手順を繰り返して、より多くの標的細胞を照射します。
  5. セクション4で説明するように中脳領域のタイムラプスイメージングを行う。

6. 画像処理

  1. 取得した画像に対して「最大投影」を実行します。
  2. [最大投影数] ビューで、ターゲット セルの XY 位置と時間を検索してマークします。
  3. 標準ビューに戻り、ターゲット セルの Z 位置を検索してマークします。
  4. ターゲット セルの単一レイヤー イメージをトリミングします。
  5. オーバーレイチャンネルと明るいフィールドをビデオとしてAVI形式で書き出します。
  6. ImageJ でオーバーレイ チャネルと明るいフィールドの対象領域をトリミングします。
  7. 最後のステップの 2 つのビデオを垂直方向に結合し、ImageJ で 1 つの AVI 形式のビデオとして保存します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

マイコバクテリウム感染は、感染経路に基づいて異なる宿主応答を引き起こす可能性があります。このプロトコルでは、ゼブラフィッシュ胚は、蛍光標識細菌を中脳または幹に筋肉内マイクロインジェクションによって感染させ、共焦点生イメージングによって観察される。これら2つの経路を介した感染は、自然免疫細胞の募集とその後の細胞死を引き起こす感染を局所的に制限する。

自然免疫細胞死の詳細を可視化することは困難です。溶解細胞死は非常に短い時間枠で起こり、観察するために高解像度の顕微鏡検査を必要とする。また、自然免疫細胞の運動性が高いため、観察領域外に移動することができます。このプロトコルでは、複数の胚を並行して観察することでこの問題を解決します。ゼブラフィッシュ胚の配列は、感染のための単一のガラス顕微鏡スライドに取り付けることができ、最大10個の胚をライブイメージング用の同じ35mmガラス底皿に取り付けることができます(図4)。共焦点顕微鏡のライブデータモデルを利用することで、複数の胚を同時に観察することができます。これは、生きたイメージングの効率を高め、溶解細胞死プロセス全体を捕捉する確率を大幅に増加させます。

自然免疫系は、マイコバクテリア感染に対する防御の第一線であり、2つの主要なコンポーネントは、マクロファージと好中球です。ここでは、以前に報告されたTg(coro1a:eGFP;lyzDsRed2)Tg(mpeg1:loxP-DsRedx-loxP-eGFP;lyz:eGFP)を利用して、生体内16、17、18のマクロファージと好中球を区別します。細菌に大きく魅了されたマクロファージは丸くなり、最終的な細胞質腫脹、細胞膜の破裂、細胞質含有量の迅速な普及を伴い、運動性の低下を示した。これらの事象は、以前に報告された溶解細胞死の典型的な形態学的変化である(図5A)16。紫外線照射は、ゼブラフィッシュ20、21でアポトーシスを受ける細胞をトリガするために使用されている。この概念と一致して、UV照射マクロファージは、細胞収縮、核断片化、クロマチン縮合(図5B)22、23などの典型的なアポトーシス細胞表現型を示した。セルリアン蛍光M.マリエナム19の使用と組み合わせることで、マクロファージ、好中球、およびM.マリナム間の相互作用の3色ライブイメージングが生体内で達成された。また、マクロファージが積極的に貪食し、M.マリナムを広めることができることも観察した(補足図3A)。しかし、好中球は貪食能力が限られており、明らかな細菌のエンゴージングなしにすぐに溶解細胞死を受けた(補足図3B)。好中球は、セルリアン蛍光を発現しない少数の死んだM.マリナムの食細胞症、または単に限られた死細胞破片の貪食によって引き起こされる可能性がある。

Figure 1
図1:単一細胞細菌調製の概略図単一細胞セルリアン蛍光M.マリアンム株は、記載されたプロセスに従って生成された。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:マイクロインジェクション用ゼブラフィッシュ胚装着の図(A) 取り付けプロセスの概略図。(B)ゼブラフィッシュ胚は、幹領域の感染のために横に取り付けられた。(C)ゼブラフィッシュ胚は、中脳の感染のために上向きに向けられた頭部で取り付けられた。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図3:マイクロインジェクションの位置決め(A) 赤い矢印は、幹領域の感染部位を示す。(B) 赤い矢印は、中脳感染の注射部位を示す。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 4
図4:生イメージングのためのゼブラフィッシュ胚の取り付け(A) 中脳感染では、ゼブラフィッシュ胚を頭部を下方に向けて取り付けた。(B)幹領域感染については、ゼブラフィッシュ胚をガラス底皿の底部に近い注射部位で横に取り付けた。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 5
5:M.マリナム感染における典型的な形態学的変化は、マクロファージ溶解細胞死およびUV誘導マクロファージアポトーシスを誘発した。(A) M.マリナムに大きく魅了されると溶解細胞死を受けるマクロファージ(Mac)のタイムラプスイメージング3 dpf Tg(coro1a:eGFP;lyzDsRed2)ゼブラフィッシュ胚の中脳は、マイクロインジェクションを介してセルリアン蛍光M.marinum(〜500 cfu)によって感染する。オーバーレイチャンネル(上パネル)とDICチャンネル(下パネル)の両方の画像が提供されます。T 00:00 は 5 h 20 分ポスト感染です。白い破線 = 細胞膜の輪郭;黒い破線=膨潤細胞質;黒い矢印=破裂した細胞膜;赤い破線 = 急速に失われた細胞質含有量。(B)UV照射マクロファージのタイムラプスイメージング。3 dpf Tg(mfap4:eGFP)の中脳領域にある1つのGFP+細胞にUVが照射され、その後タイムラプスイメージングが行われています。白い破線 = 細胞膜の輪郭;黒い矢印 =核断片化とクロマチン凝縮。スケール バー = 15 μm。この図の大きなバージョンを表示するには、ここをクリックしてください。

Supplemental Figure 1
補足図1:ライブイメージング用に設置された環境室。(A) 温度を28.5 °Cに保つようにデジタルコントローラを設定します。(B) 室内のぬれた拭き取りを設定して湿度を高め、卵水の蒸発を防ぎます。(C) チャンバーのカバーを閉じ、温度安定化のために少なくとも30分間待ってから、生きたイメージングを開始します。この図の大きなバージョンを表示するには、ここをクリックしてください。

Supplemental Figure 2
補足図2:ライブイメージング用の共焦点パネル設定(A) 取得パネル設定の表現。(B) レーザーパワーとスペクトル設定の表現(C) ライブデータモードでの複数のジョブとループ設定の表現。この図の大きなバージョンを表示するには、ここをクリックしてください。

Supplemental Figure 3
補足図3:マクロファージは、M.マリナム感染後に溶解細胞死を受ける感染症および好中球を播種する。(A)2 dpf Tg(coro1a:eGFP;lyz:DsRed2) ゼブラフィッシュ胚がセルリアン蛍光M.マリナム(〜100 cfu)に感染した2dpf Tg(coro1a:eGFP;lyz:DsRed2)の幹にM.マリナムを広げるマクロファージ。(B)好中球(Neu)は、マイクロインジェクションを介してセルリアン蛍光M.マリナム(〜100cfu)によって感染した3dpf Tg(mpeg1:LRLG;lyz:eGFP)ゼブラフィッシュ胚の幹領域に明らかなM.マリナムを含まない溶解細胞死を受けている。緑色はLRLGに割り当てられ、赤い色は溶解細胞死プロセスのよりよい視覚化のためにeGFPに割り当てられる。シアンの矢印は標的細胞を示す。赤い点の矢印は、次のフレームで細胞質の内容を放出しようとしているセルを指します。緑色の矢印は、細胞質含有量を失ったばかりの死んだ細胞を指します。スケール バー = 25 μmこの図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 1
ビデオ1:M.マリナムを重く積んだマクロファージは、図5Aに関連する溶解細胞死を受ける。3 dpf Tg(coro1a:eGFP;lyzDsRed2)ゼブラフィッシュ胚がセルリアン蛍光M.marinumに感染した中脳領域の9分および18秒(fps)で9分および18秒のタイムラプスイメージング(63x対物)。このビデオを表示するには、ここをクリックしてください(右クリックしてダウンロードしてください)。

Figure 1
ビデオ2:図5Bに関連するUV照射後にマクロファージがアポトーシスを受ける。3 dpf Tg(mfap4:eGFP)ゼブラフィッシュ胚の中脳領域の 6 fps で 74 分のタイムラプスイメージング (63x 目標) .胚の中脳領域にある1つのGFP+細胞にUVが照射され、その後タイムラプスイメージングが行われた。このビデオを表示するには、ここをクリックしてください(右クリックしてダウンロードしてください)。

Figure 1
ビデオ3:マクロファージは、補足図3Aに関連するM.マリナムを広める。2 dpf Tg(coro1a:eGFP;lyz:DsRed2)ゼブラフィッシュ胚がセルリアン蛍光M.マリオナムに感染した3fpsで24分のタイムラプスイメージング(63x目的)。このビデオを表示するには、ここをクリックしてください(右クリックしてダウンロードしてください)。

Figure 1
ビデオ4:好中球は、補足図3Bに関連する明らかなM.マキナムエンゴージメントなしで溶解細胞死を受ける。3 dpf Tg(mpeg1:LRLG;lyz:eGFP)ゼブラフィッシュ胚がセルリアン蛍光M.マリオナムに感染した3dpf Tg(mpeg1:LRLG;lyz:eGFP)ゼブラフィッシュ胚の3fpsで7分30sのタイムラプスイメージング(63x目的)。このビデオを表示するには、ここをクリックしてください(右クリックしてダウンロードしてください)。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

このプロトコルは、マイコバクテリア感染時のマクロファージ死の可視化を記述する。細胞膜の完全性などの因子に基づいて、感染駆動細胞死は、アポトーシスおよび溶解細胞死24、25に分けることができる。溶解細胞死は、アポトーシスよりも生物にとってストレスであり、強い炎症反応を引き起こすので24、25である。生体内での溶解細胞死の観察は、高い空間時間分解能、適切な共焦点顕微鏡の設定、および強いトランスジェニック発現の要件のために困難である。

適切なマイクロインジェクションには、いくつかの重要なステップが必要です。細菌ストックは、注射前にすべての塊を除去するために徹底的に超音波処理する必要があります。マイクロインジェクション用ゼブラフィッシュの取り付けを、低融点アガロースの2層間のガラススライドに埋め込むことで改良しました。アガロースの第2層を塗布した後、スライドを氷箱または冷たい表面に移し、凝固を加速し、アガロースの脱水を防ぎます。胚を別のスライドに取り付ける必要がある場合は、余分な卵水を加えてアガロースの最上層を湿らせておいてください。

生きたイメージングでは、細胞死の詳細を観察するために高解像度の対物レンズが必要です。この要件は、常に短い作業距離を伴うため、感染部位をカバースライドの近くに配置する必要があります。長い働く距離の水レンズはより深いティッシュをイメージするのに理想的であり、適切な胚の土台のためのより多くのスペースを可能にする。高強度のレーザーを用いた長時間のライブイメージングは、組織損傷または胚の死を引き起こす。したがって、光漂白や毒性を避けるために、レーザーの強度をできるだけ低く保つことが非常に重要です。強く発現するトランスジェニックは、低強度のレーザーを使用して観察を容易にすることができる。GFP発現はTg(mpeg1:eGFP)よりもTg(coro1a:eGFP)の方が強いため、今回の研究ではTg(mpeg1:eGFP;lyz:DsRed2)の代わりにTg(coro1a:eGFP;lyz:DsRed2)を使用しました。 共焦点機械の近くにマイクロインジェクション用のモバイルワークステーションを設定することは、迅速な応答を観察するのに最適です。氷上で低融解アガロースを冷やして固化時間を加速させることも、注入と生イメージングの間の時間を短縮するのに役立ちます。

このプロトコルでは、マクロファージの挙動を観察することに焦点を当てています。しかしながら、マイコバクテリア感染時の好中球行動の詳細な研究も有益であり得る。例えば、好中球細胞外細胞トラップ(NETs)が細胞外マイコバクテリウムの死滅にどのように関与しているかは、ほとんど未定義のままである。このプロトコルに記載のイメージング技術を、トランスジェニックとトランスジェニックを標識するヒストンタンパク質と組み合わせることで、生体内のNETsの可視化が大幅に容易になります。

現在、ゼブラフィッシュは、自然免疫細胞の挙動を研究するための非常に堅牢なシステムとして認識されています。食細胞症および細胞死の統計データは、このプロトコルを用いて達成され得る。今日利用可能な強力な遺伝子編集ツールと組み合わせることで、このプロトコルは、生体内での宿主病原体相互作用に対する様々な因子の影響をさらに理解するための効果的なプラットフォームを提供することができます。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者たちは何も開示する必要はない。

Acknowledgments

ゼブラフィッシュ株を共有してくれたジロン・ウェン博士、ステファン・オーラーズ博士、デビッド・トビン博士がM.マリナム関連の資源を共有してくれたことに感謝します。この作品は、中国国立自然科学財団(81801977)(B.Y.)、上海市保健委員会優秀青少年研修プログラム(2018YQ54)(B.Y.)、上海セーリングプログラム(18YF1420400)、上海キー研究所オープンファンド(2018年)によって支援されました。

Materials

Name Company Catalog Number Comments
0.05% Tween-80 Sigma P1379
10 mL syringe Solarbio YA0552
10% OADC BD 211886
3-aminobenzoic acid Sigma E10521
5 μm filter Mille X SLSV025LS
50 μl/ml hygromycin Sangon Biotech A600230
7H10 BD 262710
7H9 BD 262310
A glass bottom 35 mm dish In Vitro Scientific D35-10-0-N
Agarose Sangon Biotech A60015
Confocal microscope Leica TCS SP5 II
Enviromental Chamber Pecon temp control 37-2 digital
Eppendorf microloader Eppendorf No.5242956003
Glass microscope slide Bioland Scientific LLC 7105P
Glycerol Sangon Biotech A100854
Incubator Keelrein PH-140(A)
M.marinum ATCC BAA-535
Microinjection needle World Precision Instruments IB100F-4
Microinjector Eppendorf Femtojet
Micromanipulator NARISHIGE MN-151
msp12:cerulean Ref.: PMID 25470057; 27760340
Phenol red Sigma P3532
PTU Sigma P7629
Single concavity glass microscope slide Sail Brand 7103
Sonicator SCICNTZ JY92-IIDN
Spectrophotometer (OD600) Eppendorf AG 22331 Hamburg
Stereo Microscope OLYMPUS SZX10
Tg(mfap4:eGFP) Ref.: PMID 30742890
Tg(coro1a:eGFP;lyzDsRed2) Ref.: PMID 31278008
Tg(mpeg1:LRLG;lyz:eGFP) Ref.: PMID 27424497; 17477879

DOWNLOAD MATERIALS LIST

References

  1. Behar, S. M., Divangahi, M., Remold, H. G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy. Nature Reviews Microbiology. 8 (9), 668-674 (2010).
  2. Lamkanfi, M., Dixit, V. M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 8 (1), 44-54 (2010).
  3. Crowley, L. C., Marfell, B. J., Scott, A. P., Waterhouse, N. J. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harbor Protocol. 2016 (11), (2016).
  4. Crowley, L. C., Marfell, B. J., Waterhouse, N. J. Detection of DNA Fragmentation in Apoptotic Cells by TUNEL. Cold Spring Harbor Protocol. 2016 (10), (2016).
  5. Chan, L. L., McCulley, K. J., Kessel, S. L. Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry. Methods in Molecular Biology. 1601, 27-41 (2017).
  6. Rathkey, J. K., et al. Live-cell visualization of gasdermin D-driven pyroptotic cell death. Journal of Biological Chemistry. 292 (35), 14649-14658 (2017).
  7. Henry, K. M., Loynes, C. A., Whyte, M. K., Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. Journal of Leukocyte Biology. 94 (4), 633-642 (2013).
  8. Harvie, E. A., Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. Journal of Leukocyte Biology. 98 (4), 523-537 (2015).
  9. Lesley, R., Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish. Current Opinion Microbiology. 11 (3), 277-283 (2008).
  10. Tobin, D. M., Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cellular Microbiology. 10 (5), 1027-1039 (2008).
  11. Clay, H., et al. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe. 2 (1), 29-39 (2007).
  12. Davis, J. M., et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17 (6), 693-702 (2002).
  13. Benard, E. L., et al. Infection of zebrafish embryos with intracellular bacterial pathogens. Journal of Visualized Experiments. (61), e3781 (2012).
  14. Maglione, P. J., Xu, J., Chan, J. B. cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. Journal of Immunology. 178 (11), 7222-7234 (2007).
  15. Wang, Z., et al. Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae. Fish Shellfish Immunology. 87, 565-572 (2019).
  16. Wang, T., et al. Nlrc3-like is required for microglia maintenance in zebrafish. Journal of Genetics and Genomics. 46 (6), 291-299 (2019).
  17. Hall, C., Flores, M. V., Storm, T., Crosier, K., Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Developmental Biology. 7, 42 (2007).
  18. Xu, J., Wang, T., Wu, Y., Jin, W., Wen, Z. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Developmental Cell. 38 (2), 214-222 (2016).
  19. Oehlers, S. H., et al. Interception of host angiogenic signalling limits mycobacterial growth. Nature. 517 (7536), 612-615 (2015).
  20. Kulms, D., Schwarz, T. Molecular mechanisms of UV-induced apoptosis. Photodermatology, Photoimmunology and Photomedicine. 16 (5), 195-201 (2000).
  21. van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. FASEB Journal. 24 (11), 4336-4342 (2010).
  22. Zhang, Y., Chen, X., Gueydan, C., Han, J. Plasma membrane changes during programmed cell deaths. Cell Research. 28 (1), 9-21 (2018).
  23. Lu, Z., Zhang, C., Zhai, Z. Nucleoplasmin regulates chromatin condensation during apoptosis. Proceedings of the National Academy of Science U. S. A. 102 (8), 2778-2783 (2005).
  24. Ashida, H., et al. Cell death and infection: a double-edged sword for host and pathogen survival. Journal of Cell Biology. 195 (6), 931-942 (2011).
  25. Traven, A., Naderer, T. Microbial egress: a hitchhiker's guide to freedom. PLoS Pathogens. 10 (7), 1004201 (2014).

Tags

免疫学と感染 問題 143 マイコバクテリア感染 生体内顕微鏡 マクロファージ 好中球 細胞死 ゼブラフィッシュ
バイタル顕微鏡によるゼブラフィッシュ胚におけるマイコバクテリア感染時のマクロファージ溶解細胞死の可視化
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Niu, L., Wang, C., Zhang, K., Kang,More

Niu, L., Wang, C., Zhang, K., Kang, M., Liang, R., Zhang, X., Yan, B. Visualization of Macrophage Lytic Cell Death During Mycobacterial Infection in Zebrafish Embryos via Intravital Microscopy. J. Vis. Exp. (143), e60698, doi:10.3791/60698 (2019).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter