Este artigo tem como objetivo apresentar um método para formar filmes suaves e bem controlados de cloreto de prata (AgCl) com cobertura designada em cima de eletrodos de prata de filme fino.
Este artigo tem como objetivo apresentar um protocolo para formar filmes suaves e bem controlados de cloreto de prata/prata (Ag/AgCl) com cobertura designada em cima de eletrodos de prata de filme fino. Eletrodos de prata de filme fino tamanho 80 μm x 80 μm e 160 μm x 160 μm foram sputtered em wafers de quartzo com uma camada de cromo/ouro (Cr/Au) para adesão. Após a passivação, polimento e processos de limpeza catódica, os eletrodos foram submetidos à oxidação galvanática com consideração da Lei de Eletrólise de Faraday para formar camadas lisas de AgCl com um grau de cobertura designado em cima do eletrodo de prata. Este protocolo é validado pela inspeção de imagens de microscópio eletrônico de varredura (SEM) da superfície dos eletrodos de película finas Ag/AgCl fabricados, que destaca a funcionalidade e o desempenho do protocolo. Eletrodos fabricados sub-idealmente são fabricados também para comparação. Este protocolo pode ser amplamente utilizado para fabricar eletrodos Ag/AgCl com requisitos específicos de impedância (por exemplo, sondagem de eletrodos para aplicações sensoriais de impedância, como citometria de fluxo de impedância e matrizes de eletrodos interdigitados).
O eletrodo Ag/AgCl é um dos eletrodos mais utilizados no campo da eletroquímica. É mais comumente usado como eletrodo de referência em sistemas eletroquímicos devido à sua facilidade de fabricação, propriedade não tóxica e potencial eletrodo estável1,,2,3,4,,5,6.
Pesquisadores tentaram entender o mecanismo dos eletrodos Ag/AgCl. A camada de sal cloreto no eletrodo foi encontrada como um material fundamental na reação redox característica do eletrodo Ag/AgCl em um cloreto contendo eletrólito. Para o caminho de oxidação, a prata nos locais de imperfeição na superfície do eletrodo combina-se com os íons cloreto na solução para formar complexos de AgCl solúveis, nos quais se difundem às bordas do AgCl depositado na superfície do eletrodo para precipitação na forma de AgCl. O caminho de redução envolve a formação de complexos de AgCl solúveis usando o AgCl no eletrodo. Os complexos se difundem à superfície de prata e reduzem-se à prata elementar7,8.
A morfologia da camada AgCl é uma influência fundamental na propriedade física dos eletrodos Ag/AgCl. Vários trabalhos mostraram que a grande área de superfície é fundamental para formar eletrodos Ag/AgCl de referência com potenciais eletrodos altamente reprodutíveis e estáveis9,,10,,11,12. Portanto, pesquisadores têm investigado métodos para criar eletrodos Ag/AgCl com uma grande área de superfície. Brewer et al. descobriram que o uso de tensão constante em vez de corrente constante para fabricar eletrodos Ag/AgCl resultaria em uma estrutura agcl altamente porosa, aumentando a área de superfície da camada AgCl11. Safari et al. aproveitaram o efeito de limitação de transporte em massa durante a formação de AgCl na superfície de eletrodos de prata para formar nanofolhas AgCl em cima delas, aumentando significativamente a área de superfície da camada AgCl12.
Há uma tendência crescente de projetar eletrodo AgCl para aplicações de sensoriamento. Uma impedância de baixo contato é crucial para detectar eletrodos. Assim, é importante entender como o revestimento superficial da AgCl afetaria sua propriedade de impedância. Nossa pesquisa anterior mostrou que o grau de cobertura de AgCl no eletrodo de prata tem uma influência fundamental sobre a impedância característica da interface eletrodo/eletrólito13. No entanto, para estimar corretamente a impedância de contato dos eletrodos ag/agcl de filme fino, a camada AgCl formada deve ser lisa e ter cobertura bem controlada. Portanto, é necessário um método para formar camadas agCl suaves com graus designados de cobertura agCl. Foram feitas obras para resolver essa necessidade parcialmente. Brewer et al. e Pargar et al. discutiram que um AgCl suave pode ser alcançado usando uma corrente constante suave, fabricando a camada AgCl em cima do eletrodo de prata11,14. Katan et al. formaram uma única camada de AgCl em suas amostras de prata e observaram o tamanho das partículas agcl individuais8. Sua pesquisa descobriu que a espessura de uma única camada de AgCl é de cerca de 350 nm. O objetivo deste trabalho é desenvolver um protocolo para formar filmes finos e bem controlados de AgCl com propriedades de impedância previstas em cima de eletrodos de prata.
As propriedades físicas de um eletrodo Ag/AgCl são controladas pela morfologia e pela estrutura do AgCl depositado no eletrodo. Neste artigo, apresentamos um protocolo para controlar precisamente a cobertura de uma única camada de AgCl na superfície do eletrodo de prata. Uma parte integrante do protocolo é uma forma modificada da Lei de Eletrólise de Faraday, que é usada para controlar o grau de AgCl nos eletrodos de prata de filme fino. Pode ser escrito como:
<img alt="Equation" src="/…
The authors have nothing to disclose.
Este trabalho foi apoiado por uma subvenção do Fundo Conjunto RGC-NSFC patrocinada pelo Conselho de Bolsas de Pesquisa de Hong Kong (Projeto nº N_HKUST615/14). Gostaríamos de reconhecer a NFF (Nanosystem Fabrication Facility, instalação de fabricação de nanosistema) do HKUST para a fabricação do dispositivo/sistema.
AST Peva-600EI E-Beam Evaporation System | Advanced System Technology | For Cr/Au Deposition | |
AZ 5214 E Photoresist | MicroChemicals | Photoresist for pad opening | |
AZ P4620 Photoresist | AZ Electronic Materials | Photoresist for Ag liftoff | |
Branson/IPC 3000 Plasma Asher | Branson/IPC | Ashing | |
Branson 5510R-MT Ultrasonic Cleaner | Branson Ultrasonics | Liftoff | |
CHI660D | CH Instruments, Inc | Electrochemical Analyser | |
Denton Explorer 14 RF/DC Sputter | Denton Vacuum | For Ag Sputtering | |
FHD-5 | Fujifilm | 800768 | Photoresist Development |
HPR 504 Photoresist | OCG Microelectronic Materials NV | Photoresist for Cr/Au liftoff | |
Hydrochloric acid fuming 37% | VMR | 20252.420 | Making diluted HCl for cathodic cleaning |
J.A. Woollam M-2000VI Spectroscopic Elipsometer | J.A. Woollam | Measurement of silicon dioxide passivation layer thickness on dummy | |
Multiplex CVD | Surface Technology Systems | Silicon dioxide passivation | |
Oxford RIE Etcher | Oxford Instruments | For Pad opening | |
Potassium Chloride | Sigma-Aldrich | 7447-40-7 | Making KCl solutions |
SOLITEC 5110-C/PD Manual Single-Head Coater | Solitec Wafer Processing, Inc. | For spincoating of photoresist | |
SUSS MA6 | SUSS MicroTec | Mask Aligner | |
Sylgard 184 Silicone Elastomer Kit | Dow Corning | Adhesive for container on chip |