Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

小ヌクレオチド基質のポリヌクレオチドリン酸化を測定する非放射性アッセイ

Published: May 8, 2020 doi: 10.3791/61258

Summary

このプロトコルは、小さなDNAおよびRNA基質上のポリヌクレオチドキナーゼ(PNK)のキナーゼ活性を測定するための非放射性アッセイを記述する。

Abstract

ポリヌクレオチドキナーゼ(PNK)は、DNAおよびRNAオリゴヌクレオチドの5'ヒドロキシル末端のリン酸化を触媒する酵素である。PNK のアクティビティは、直接的または間接的なアプローチを使用して定量化できます。ここで提示されるPNK活性を測定するための直接的なインビトロアプローチは、蛍光標識オリゴヌクレオチド基質およびポリアクリルアミドゲル電気泳動に依存する。このアプローチは、放射性標識基材の使用を避けながら、リン酸化産物の分解能を提供します。プロトコルは、リン酸化反応を設定する方法を詳述し、大規模なポリアクリルアミドゲルを調製して実行し、反応生成物を定量化します。このアッセイの最も技術的に挑戦的な部分は、大きなポリアクリルアミドゲルを注ぎ、実行しています。したがって、共通の困難を克服するための重要な詳細が提供されます。このプロトコルは、結合パートナーであるLas1ヌクレアーゼと共に、義務的なプリリボソームRNA処理複合体に組み立てるPNKであるGrc3に最適化されました。しかし、このプロトコルは、他のPNK酵素の活性を測定するために適応することができる。また、このアッセイは、ヌクレオシド三リン酸、金属イオン、オリゴヌクレオチドなどの反応の異なる成分の影響を決定するように改変することもできる。

Introduction

ポリヌクレオチドキナーゼ(PNK)は、DNA修復およびリボソームアセンブリ1、2、3、4、52,3などの多くのDNAおよびRNA処理経路において重要な役割,45果たす。1これらの基本的な酵素は、ヌクレオシド三リン酸(NTP、最も頻繁にATP)からヌクレオ基質の5'ヒドロキシル末端への末端(γ)一リン酸の転写を触媒する。最もよく特徴づけられるPNKsの1つはバクテリオファージT4 PNKであり、広範な基質特異性を有し、DNAまたはRNA基板の5末端に放射性同位体標識を組み込むための分子生物学研究室によって多く利用されている676、7、8、9、10、11、128,9,10,11,12である。,PNK酵素の別の例は、エウカヤ、ユースバクテリア、および古細菌に見られるCLP1であり、いくつかのRNA処理経路44、13、14、1513,14,15に関与している。

歴史的に、ポリヌクレオチドキナーゼ活性を測定するほとんどのアッセイは、放射性同位体標識とそれに続くオートラジオグラフィー55,1616に依存する。,近年では、単一分子アプローチ、マイクロチップ電気泳動、分子ビーコン、および,17、18、19、20、21、22の着色および発光ベースアッセイを含む、PNK活性を測定17,18,19するための追加アッセイが数多く開発されている。21,2220これらの新しいアプローチの多くは、検出限界を強化し、放射能の使用を回避しますが、コスト、固定樹脂への依存、および基板選択の制限などの欠点があります。

Grc3は、リボソーム前,RNA2,3,23,3の処理において極めて重要な役割を果たすポリヌクレオチドキナーゼである。23Grc3は、エンドリボヌクレアーゼLas1と共に、リボソームRNA3の内部転写スペーサー2(ITS2)を切断する義務複合体を形成する。Las1によるITS2の切断は、その後Grc3キナーゼ3によってリン酸化される5'ヒドロキシルを収容する製品を生成する。Grc3のヌクレオチドおよび基質特異性を調べるには、異なるオリゴヌクレオチド基質の検査を可能とする安価なアッセイが必要であった。そこで、蛍光標識基質を用いたPNKリン酸化アッセイが開発された。このアッセイは、Grc3がリン酸化伝達活動のために任意のNTPを利用できることを決定するためにうまく使用されたが、ATP24を支持する。このプロトコルは、元のアッセイを適応させ、その前リボソームRNA基質のRNA模倣物に対するGrc3のPNK活性を測定する(SC-ITS2、表1)。この蛍光ベースのアプローチの挑戦的な側面の1つは、リン酸化および非リン酸化基質を効果的に解決するための大きなポリアクリルアミドゲルへの依存である。プロトコルは、これらの大きなゲルを注ぐ方法についての具体的な詳細を提供し、そうするときに一般的な落とし穴を避ける。

RNAを使用する場合は、分解の影響を強く受けやすいため、特に注意が必要です。リボヌクレアーゼ汚染を制限するために取ることができる簡単な予防ステップがあります。RNase阻害剤含有洗浄剤で容易に処理できる別のRNAワークステーションは、しばしば有用である。試料の取り扱い時には常に手袋を着用し、RNaseフリーの認定消耗品を使用する必要があります。水は汚染の別の一般的な原因であるため、精製された水を使用し、0.22 μmのフィルターを使用してすべての溶液を殺菌するのが最善です。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 準備

  1. バッファーと試薬を準備します。
    1. 1 Mトリス20μL(pH = 8.0)、5M塩化ナトリウム40μL、2.5μLの2M塩化マグネシウム、50%(v/v)グリセロールの100μL、およびRNaseフリーウォーターを組み合わせて1mLの総体積に達することにより、1x反応バッファーを作ります。
    2. 尿素4.8g、1Mトリス200μL(pH = 8.0)、0.5M EDTA(pH = 8.0)の20μL、1%(w/v)ブロモフェノールブルーの0.5mL、およびRNaseフリー水を組み合わせて、合計体積10mLに達します。
    3. トリスベース108g、ホウ酸55g、0.5M EDTA(pH=8.0)の40mL、およびRNaseフリー水を組み合わせて1Lの総体積に達することにより、10x TBEバッファーを作ります。
    4. 10%(w/v)過硫酸アンモニウム(APS)を作ります。APSの0.5gの重量を量り、固体を溶解するためにRNaseフリー水の3 mLを加えます。RNaseフリーの水を加えると、合計容量5mLに達します。チューブをホイルで包み、溶液を4°Cで保存します。
      注: ディゾルブされた APS は時間の経過とともに減衰します。10% の APS 在庫を 2 週間ごとに交換してください。
  2. ポリヌクレオチドキナーゼ酵素を得る。
    1. 20 μMのストック濃度で、反応バッファーに保存された 純粋な Las1-Grc3 PNK 酵素2(ステップ 1.1.1 を参照)を取得します。ストレージバッファは、特定のPNKによって異なります。
  3. 核酸基質を調製する。
    注: このプロトコルは、サッカロマイセス・セレビシエ前リボソーム内部転写スペーサ2(SC-ITS2;1)2、25、26を参照して、Las1-Grc3処理部位(C2部位)を収容する27nt RNA基材の5'リン酸化を監視する。2,25,26
    1. 5'-ヒドロキシル末端を含むRNAオリゴヌクレオチド基質を3'-蛍光標識とともに化学的に合成する。フルオロフォアはRNAの可視化に使用されます。蛍光体がリン酸化の対象とならないRNAの端に位置していることを確認します。市販のソースに代わるものとして、RNA基質の内部および末期蛍光標識は、費用対効果の高いプロトコル27を用いて社内で行うことができる。
    2. HPLC精製28によるRNA標識反応から過剰な蛍光を除去する。
    3. 500 nMにRNaseフリー水を使用して凍結乾燥したRNAを再懸濁します。
    4. 長期保存時は-80 °C、短期保存には-20°CでRNAアリコートを保存します。
  4. ATP濃度シリーズを準備します。
    1. 反応バッファを使用してATPの20 mM作業ストックを作成します(ステップ1.1.1を参照)。この作業ストックを使用して、20 mM-0.02 mM の範囲の 4 つの連続希釈液を生成します。
    2. 濃度シリーズの最初の希釈を作るために、反応の緩衝の9 μLと20 mM ATPの作業ストックの1 μLを混ぜる。これにより、2 mMの最終濃度でATPの10倍希釈が生じる。
    3. ステップ 1.4.2 で生成された 2 mM ATP ストックを使用して、濃度シリーズの次の希釈を行います。2 mM ATP ストックの 1 μL を 9 μL の反応バッファーと混合します。これにより、新しい ATP 在庫濃度が 0.2 mM になります。
    4. 9 μLの反応バッファーで、直前の ATP ストックの 1 μL を希釈し続け、濃縮シリーズの後続の ATP ストックを作成します。

2. インビトロRNAキナーゼ反応

注:このアッセイは、時間、ヌクレオチドレベル、酵素濃度などのいくつかの変数を測定するために使用することができます。この実験の目的は、一定の Las1-Grc3 複合体および様々な ATP レベルの存在下でリン酸化 RNA の量を評価することです。

  1. RNA-酵素キナーゼ反応ごとに、500 nM RNA基質の1μL、130 nM Las1-Grc3の8.3 μL、および5 mM EDTAの0.2 μLを組み合わせます。
    注:複数の反応を行う場合は、RNA-酵素混合物のマスターストックを調製し、各反応管にこのマスターミックスの9.5μLをアリコートします。
  2. アッセイを開始します。
    1. ヒートブロックを37°Cに設定します。
    2. 10秒間隔で、ステップ1.4で調製したATP濃度シリーズから1つのATPサブストックの0.5 μLを1つのRNA-酵素混合物と混合し、37°Cヒートブロックに反応させます。
      注:PNK陰性制御のために1つのRNA酵素混合物にATPの代わりに0.5 μLの反応バッファーを加えてください。別の必要な制御(すなわち、PNK酵素の存在しない場合のRNA基質)も使用する。
    3. 反応を37°Cで60分間インキュベートします。
      注:蛍光標識されたRNAは光に敏感です。したがって、フォイルで反応をカバーします。
    4. ステップ2.2.2と同じ順序で、10μLの尿素負荷染料で反応をスパイクして各反応を10秒ごとにクエンチします(ステップ1.1.2参照)。
      注:4 M尿素に加えて、このステップでプロテナーゼKを添加して酵素を分解してもよい。サプライヤーから提供される指示に従って、必要なプロテアーゼ量と反応条件を決定します。
    5. 急流解析(セクション3参照)に直ちにクエンチインインビトロRNAキナーゼ反応を使用するか、後日分析する-20°Cで保存してください。

3. ゲル電気泳動

  1. 15%アクリルアミド/8 M尿素ゲル溶液を調製します。
    注意:アクリルアミドは神経毒であるため、注意して取り扱う必要があります。手袋、ラボコート、ゴーグルは必ず着用してください。
    1. 150 mL ガラスビーカーでは、22.5 mLのプレミックス 40% アクリルアミド/ビスアクリルアミド 29:1溶液、6 mLの 10x TBE(ステップ 1.1.3 参照)、尿素28.8 g、およびRNaseフリー水を合計容量 59 mL に結合します。溶液を軽くかき混ぜます。
      注:RNA基質の長さに応じて、ポリアクリルアミドの割合を変更すると、リン酸化されていないRNAとリン酸化RNAの間の分解能が向上する可能性があります。
    2. 尿素を溶解するには、溶液をマイクロ波で20s加熱し、液体をかき混ぜ、すぐに溶液をマイクロ波に戻して別の20sに戻します。尿素が完全に溶解するまで溶液を軽くかき混ぜます。
    3. 冷たい水を含む浅い水浴にガラスビーカーを置くことによって、溶液をゆっくりと冷却します。ガラスビーカーを取り巻く冷たい水のレベルがガラスビーカー内の溶液のレベルを上回っていることを確認してください。これにより、効率的な熱伝達が促進されます。5分待ちます。
      注: ガラスビーカーが暖かいと感じた場合は、このプロトコルを続行しないでください。水は25°C以下でなければなりません。 5分後にまだ暖かい感じがする場合は、水浴中の水を新鮮な冷たい水に置き換え、さらに5分待ちます。
    4. 0.22 μmの使い捨てろ過単位を使用して、微粒子や微小気泡を除去して、溶液をフィルター処理して脱気します。
  2. 変性ゲルを注ぎます。
    1. 石鹸とぬるま湯を使用して、31.0 cm x 38.5 cmの全体的な寸法のゲル用に設計された短くて長いガラス板を洗浄してください。各ガラス板に95%エタノールをスプレーし、ガラスを拭いて水分を取り除きます。
      注:2つのプレートのうちの1つは、ガラス板サンドイッチを分離する際にゲルの損傷を防ぐためにシリコン化することができます。しかし、このプロトコルは、ガラス板を分離せずにRNAを可視化するように設計されているため、このステップは必要ありません。
    2. 長いガラス板をボックスの上に水平に置き、ベンチトップから引き上げるようにします。
      注意:アクリルアミドは有毒であるため、ゲル注ぎステーションは、こぼれた液体を吸収し、手順が完了した後すぐに廃棄物袋に入れることができるベンチペーパーで覆われなければなりません。
    3. 長いガラス板の長い縁に沿って清潔な0.4mmのスペーサーを置きます。
    4. 長いプレートの上に短いガラス板を置き、短いプレート、長いプレート、スペーサーのエッジが揃っていることを確認します。3つの等間隔の金属クランプを使用して、各側をクランプします。
    5. ステップ3.1で調製した15%アクリルアミド/8M尿素溶液に24μLのTEMEDを加え、溶液を混合します。
    6. ステップ 3.2.5 の 600 μL の APS (ステップ 1.1.4 を参照) をソリューションに加え、ソリューションを穏やかに混合します。
    7. すぐにガラス板の間に溶液を注ぎます。
      注:泡を避けるために、溶液が注がれ、ガラスをタップします。
    8. ガラス板サンドイッチの上部に清潔な0.4 mm、32ウェルコームを慎重に追加します。
    9. アクリルアミドを重合させるために最低30分を必要とします。
  3. 変性ゲルを実行します。
    1. ヒートブロックを75°Cに設定します。
    2. ガラス板サンドイッチを一緒に保持している金属クランプを取り外し、ガラス板サンドイッチを十分に洗浄して乾燥させます。
    3. ガラス板サンドイッチを、ショートプレートを内側に向けてゲル装置に入れます。
    4. 100 mLのTBEと1.9 L RNaseフリーの水を組み合わせて、0.5x TBEランニングバッファを用意します。600 mLのランニングバッファをゲル装置の上下のチャンバーに加えます。
    5. くしをそっと取り出し、シリンジを使って井戸を十分に洗いすります。
      注:このステップは、ウェルから尿素を除去するために重要です。
    6. 50 Wで30分間ゲルをプレランすると約2,000Vです。
      注意:このゲル装置は高ワット数で動作し、ユーザーは予防措置を示す必要があります。
    7. 注射器を使用して井戸を十分に洗いすいます。
      注: このステップは、サンプルを井戸にロードする場合にも重要です。
    8. パルスは、ステップ2.2.5からの急行反応を回転させます。その後、75°Cで3分間チューブをインキュベートします。パルススピンを繰り返します。
    9. すぐにウェルあたり10μLのサンプルをロードし、50 Wで3時間ゲルを実行します。
      注:蛍光標識されたRNAは光に敏感です。そのため、ゲル装置をホイルで覆います。
  4. 変性ゲルを画像化します。
    1. 電源を切り、ゲル装置の上部チャンバーを排水します。
    2. 石鹸と水を使ってガラス板サンドイッチの外側を洗って乾かします。ゲルを輸送しながら、ホイルでガラス板サンドイッチを覆います。
    3. ガラス板サンドイッチを、定量的で敏感な蛍光検出が可能なレーザースキャナーのステージに取り付けます。
      注: このゲルは極めて薄く、最大解像度です。このため、このプロトコルは、ガラス板を通して蛍光標識RNAを直接可視化することによって、ガラス板サンドイッチからゲルを除去する困難を避けるように設計されています。市販の低蛍光ガラス板を使用すると、信号対雑音比を改善することで捕捉信号が増加します。
    4. 目的の蛍光色素にレーザースキャナーの励起波長と発光波長を設定します。
      注: 最適な励起波長と発光波長は、特定の蛍光色素に異なる場合があります。FAMの蛍光色素の場合、励起波長と発光波長はそれぞれ495 nmおよび535 nmです。
    5. レーザースキャナーステージで視覚化する領域を定義し、メーカーの指示に従ってゲルを画像化します(図1)。

4. 画像解析と信号定量

  1. ステップ 3.4.5 で取得したデジタルゲル画像を画像処理ソフトウェアにロードします ( 材料表を参照)。
  2. マウスの左ボタンを使用して、長方形をクリックしてドラッグし、各RNAバンドの定量化に使用するデジタルゲル画像の境界をマークするテンプレートボックスを定義します。PNK酵素の不在中に設定された反応混合物に見られるRNAバンドは、通常、このテンプレートを生成するのに良いバンドである。
    注:バックグラウンド信号によるバイアスを避けるために、測定される各RNAバンドの周囲の領域が同一であることが重要です。このため、各RNAバンドを区切るために同じテンプレートボックスを使用するのが最善です。
  3. [ツール] の下の [ROI マネージャ] を開き、[追加] をクリックしてテンプレート ボックスの位置をマークします。
    注:定量プログラムは、ソフトウェアユーザーマニュアルに従って自動的にボックスを描画することもできます。
  4. マウスの左ボタンを使用して、テンプレートボックスをクリックして次のRNAバンドにドラッグし、ステップ4.3を繰り返します。各反応におけるリン酸化されていないRNAバンドおよびリン酸化されたRNAバンドの位置がマークされるまで、このプロセスを続けます。
  5. ROI マネージャの [測定] をクリックして、各ボックス内の統合密度を測定します。
  6. 反応中のリン酸化RNAの相対量を計算するには、リン酸化RNAバンドの積分密度を同じ反応からの非リン酸化RNAバンドとリン酸化RNAバンドの積分密度の和で割る。このアプローチは、非リン酸化RNAの相対量を計算するためにも適用することができる。
  7. ATP濃度シリーズ全体でリン酸化RNA産物の蓄積とそれに対応する非リン酸化RNA基質の枯渇を可視化するために、ATPの濃度に対してステップ4.6で計算されたRNAの相対的量をプロットする。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

一定量の Las1-Grc3 複合体を有する ATP の滴定の代表変性ゲルを図 1に示します。酵素の付加は、SC-ITS2 RNA基質のLas1媒介RNA切断をもたらし、定義されたRNA断片(5-OH C2 RNA)につながった。ATPを添加すると、C2 RNA断片をGrc3 PNK(5-P C2 RNA)によりリン酸化した。変性ゲルでは、リン酸化RNAは、その非リン酸化されたRNAよりも速く移動します。 図2に示すように、C2 RNA断片のリン酸化は、ATP濃度に対する非リン酸化およびリン酸化されたC2 RNAの相対的量をプロットすることによって可視化することができた。Grc3 PNKはまた、低いレートではあるが、ノーカットSC-ITS2基質の5端をリン酸化した。これは、Grc3 PNKがそのC2 RNA基質24に対する基質好みを示す前の研究を確認する。失敗した変性ゲルを 図 3に示します。このゲルは、21nt RNA基質に分解物が含まれていたため、不成功であった(図3、第1レーン)。これらの分解物はリン酸化産物と重なり、リン酸化を正確に定量することが不可能となった。対照的に、最短のRNA分解産物(図3、灰色の矢印)は、ゲルのこの領域に、リン酸化された対応物の正確な定量を妨げるRNA種が含まれていないため、正常に分析することができました。RNA の分解バンドを避けるために、ワークスペースと溶液を RNase を使用しないようにし、RNA 凍結融解サイクルの数を制限します。

Figure 1
図1:リン酸化RNAの変性ゲル分析の例 500 nM SC-ITS2 RNAを用いて培養した Las1-Grc3(110 nM)のインビトロRNAキナーゼアッセイ。Xは Las1-Grc3を除く制御反応を示し、黒い三角形は0-10 mMからのATPの滴定を表す。C2 RNAは、Las1ヌクレアーゼによるSC-ITS2 RNA切断の結果であり、Grc3 PNK活性の内因性基質です。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:RNAリン酸化の定量化。 LAS1-Grc3 RNAキナーゼ活性のデンシオメトリックプロットは、ATP濃度系列にわたって非リン酸化C2 RNA(グレーライン;5-OH C2 RNA)およびリン酸化されたC2 RNA(ブラウンライン;5-P C2 RNA)の割合として表わされた。誤差範囲は、3 つの独立した技術反復からの標準偏差を示します。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図3:リン酸化RNAの変性ゲル分析に失敗した例。 5 μm 21 nt RNAでインキュベートされたT4 PNK(0-0.625 U)のインビトロRNAキナーゼアッセイ。XはT4 PNKを使わない制御反応を示す。このRNAは、分解産物と分解物(黒矢印)を21ntリン酸化産物と区別することが不可能な分解されたRNA産物のみを含有します。最短RNA分解物(グレー矢印)のリン酸化は、そのリン酸化された他の物と重なる放熱産物がないため、分析することができる。 この図の大きなバージョンを表示するには、ここをクリックしてください。

シーケンス (5'→3') オリゴコード ソース
SC-ITS2 グックグウアグウウウアク
カアックCGGC/36-FAM/
mp 911 (ピロンら NSMB 2019)26
C2 RNA ググウウアッカクグ
CGGC/36-FAM/
N/a SC-ITS2のLAS1切断製品
21-nt アグアックアッガー
ウアクッガイア/36-タムスプ/
mp 596 (ピロンらRNA、2018)24

表1:蛍光標識RNA基質。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

説明は、蛍光標識ヌクレオチド基質に対するGrc3 PNKのキナーゼ活性を測定するアッセイである。このプロトコルは、反応バッファーとオリゴヌクレオチド基質を適応させることによって他の PNK 酵素を特徴付けるために適用できます。たとえば、プロトコルは EDTA のトレース量を必要とします。EDTAの添加は2つの理由で有益である:まず、このアプローチは、混合物中の微量の汚染金属に酵素が結合するのを防ぐことによってマグネシウム結合Grc3を支持する。第二に、少量のEDTAは、関連するLas1金属非依存リボヌクレアーゼの活性を破壊することなく、金属依存性リボヌクレアーゼを汚染する活性を阻害する。EDTAの濃度は、特定のPNKの供給源に応じて変化し得る。このアッセイはまた、短い半減期放射性同位元素(すなわち、リン-32の2週間半減期)で標識されたオリゴヌクレオチドに依存する従来のPNKリン酸化アッセイよりも有利である。このプロトコルは、特定の酵素活性およびミカニス・メンテン動態を測定し、ヌクレオチド、基質、および金属イオンの性質などの様々なパラメータに対するリン酸化の依存性を決定するために適応することができる。

このプロトコルは、リン酸化されていない基質とそのリン酸化産物を区別するのに十分な解像度を達成するために、大きな変性ポリアクリルアミドゲルを実行することに依存しています。これらのゲルの注ぎ込みと取り扱いは、プロトコルの重要なステップです。例えば、アクリルアミド溶液は、尿素を溶解するために加熱し、ゲルを注ぐ前にゆっくりと冷却する必要があります。この溶液をあまりにも速く冷却すると、結晶の形成につながる可能性があります。また、ゲルを注ぎ、設定しながら気泡やほこりを導入しないように注意する必要があります。ガラス板を取り外さずにゲルをイメージングすることは、薄く、一度ガラス板から取り出すと取り扱いにくいゲルを引き裂くことを避けることをお勧めします。

このプロトコルは、異なるサイズのオリゴヌクレオチド基質のリン酸化を測定するように適合させることができる。この特定のアッセイは、27 nt(SC-ITS2 RNA)および18 nt(C2 RNA)基質のリン酸化の分解能を達成するために15%アクリルアミドゲルを使用した。SC-ITS2 RNAの5末端に1つのリン酸基を添加すると、短いC2 RNAの5リン酸化に誘発される移動性変化と比較して、緩やかなシフトが生じる(図1)。これは、この技術を使用する場合のRNAの長さの制限を強調しています。より長いRNA基質では、リン酸基のRNA種の全体的な分子量への寄与が減少する。このため、アクリルアミドの割合とゲルの実行時間を最適化して、異なるサイズの基板29の分解能を達成することができる。一般に、アクリルアミドの割合が高いのは、より小さなオリゴヌクレオチド基質に使用され、アクリルアミドの割合は8%以下であるより大きなオリゴヌクレオチド基質の分解能を向上させます。

このアッセイの主な制限は、それが低スループットであるということです。変性ゲルの注ぎ込みと実行にはかなりの時間がかかり、1日に分析できるゲルとサンプルの数が制限されます。この制限を克服するための将来のアプリケーションは、リン酸化オリゴヌクレオチド製品を解決することができるマイクロ流体チップの開発である可能性があります。マイクロ流体ベースのゲル電気泳動は、サンプルサイズ、オートメーション、速度の小ささなど、従来のゲル電気泳動に比べ多くの利点があります。しかしながら、現在のマイクロ流体チップは、単一のヌクレオチド分解能を有していない。結論として、変性ゲル電気泳動を用いて非放射性オリゴヌクレオチドの移行の変化を検出することは、ポリヌクレオチドキナーゼ酵素の触媒要件および基質好みを監視するのに有用な技術を提供する。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは開示するものは何もない。

Acknowledgments

アンドリュー・シッケマ博士とアンドレア・カミンスキー博士の批判的な原稿の読み方に感謝します。この研究は、米国国立衛生研究所の壁内研究プログラムによって支援されました。米国環境衛生研究所(NIEHS;ZIA ES103247からR.E.S)とカナダ保健研究所(CIHR;146626からM.C.P)へ。

Materials

Name Company Catalog Number Comments
0.4 mm 34-well comb BioRad 1653848
0.4 mm spacer BioRad 1653812
0.5 M EDTA ph 8.0 KD Medical RGF-3130
1M Magnesium Chloride KD Medical CAC-5290
1M Tris pH 8.0 KD Medical RGF-3360
40% Acrylamide/Bis Solution 29:1 BioRad 1610146
5M Sodium Chloride KD Medical RGF-3720
ammonium persulfate (APS) BioRad 161-0700
ATP Sigma A2383-1G
boric acid Sigma B0394
bromophenol blue sodium salt Sigma B5525-5G
Glass Plates Thomas Scientific 1188K51
Hoefer SQ3 Sequencer Hoefer N/A
Image J Software N/A N/A https://imagej.nih.gov/ij/
Labeled RNA oligonucleotides IDT Custom Order
Pharmacia EPS 3500 Power Supply Pharmacia N/A
Steriflip 0. 22 um Filter Millipore 5FCP00525
TEMED BioRad 161-0800
tris base Sigma TRIS-RO
Typhoon FLA 9500 gel imager GE Healthcare N/A
Ultra Pure DEPC Water Invitrogen 750023
Ultra Pure Glycerol Invitrogen 19E1056865
urea Fisher Chemical U15-500

DOWNLOAD MATERIALS LIST

References

  1. Pillon, M. C., Stanley, R. E. Nuclease integrated kinase super assemblies (NiKs) and their role in RNA processing. Current Genetics. 64 (1), 183-190 (2018).
  2. Pillon, M. C., Sobhany, M., Borgnia, M. J., Williams, J. G., Stanley, R. E. Grc3 programs the essential endoribonuclease Las1 for specific RNA cleavage. Proceedings of the National Academy of Sciences U.S.A. 114 (28), E5530-E5538 (2017).
  3. Gasse, L., Flemming, D., Hurt, E. Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Molecular Cell. 60 (5), 808-815 (2015).
  4. Dikfidan, A., et al. RNA specificity and regulation of catalysis in the eukaryotic polynucleotide kinase Clp1. Molecular Cell. 54 (6), 975-986 (2014).
  5. Bernstein, N. K., et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Molecular Cell. 17 (5), 657-670 (2005).
  6. Rio, D. C. 5'-end labeling of RNA with [gamma-32P]ATP and T4 polynucleotide kinase. Cold Spring Harbor Protocols. 2014 (4), 441-443 (2014).
  7. Paredes, E., Evans, M., Das, S. R. RNA labeling, conjugation and ligation. Methods. 54 (2), 251-259 (2011).
  8. Hilario, E. End labeling procedures: an overview. Molecular Biotechnology. 28 (1), 77-80 (2004).
  9. Eastberg, J. H., Pelletier, J., Stoddard, B. L. Recognition of DNA substrates by T4 bacteriophage polynucleotide kinase. Nucleic Acids Research. 32 (2), 653-660 (2004).
  10. Lillehaug, J. R., Kleppe, K. Kinetics and specificity of T4 polynucleotide kinase. Biochemistry. 14 (6), 1221-1225 (1975).
  11. Richardson, C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proceedings of the National Academy of Sciences U.S.A. 54 (1), 158-165 (1965).
  12. Galburt, E. A., Pelletier, J., Wilson, G., Stoddard, B. L. Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase. Structure. 10 (9), 1249-1260 (2002).
  13. Saito, M., et al. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biology Evolution. 11 (10), 2713-2726 (2019).
  14. Jain, R., Shuman, S. Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1. RNA. 15 (5), 923-931 (2009).
  15. Weitzer, S., Hanada, T., Penninger, J. M., Martinez, J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. Wiley Interdisciplinary Reviews RNA. 6 (1), 47-63 (2015).
  16. Wang, L. K., Lima, C. D., Shuman, S. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO Journal. 21 (14), 3873-3880 (2002).
  17. Zhang, Y., Zhao, J., Chen, S., Li, S., Zhao, S. A novel microchip electrophoresis laser induced fluorescence detection method for the assay of T4 polynucleotide kinase activity and inhibitors. Talanta. 202, 317-322 (2019).
  18. Cui, L., Li, Y., Lu, M., Tang, B., Zhang, C. Y. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Biosensors and Bioelectronics. 99, 1-7 (2018).
  19. Wang, L. J., Zhang, Q., Tang, B., Zhang, C. Y. Single-Molecule Detection of Polynucleotide Kinase Based on Phosphorylation-Directed Recovery of Fluorescence Quenched by Au Nanoparticles. Analytical Chemistry. 89 (13), 7255-7261 (2017).
  20. Liu, H., Ma, C., Wang, J., Chen, H., Wang, K. Label-free colorimetric assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on G-quadruplex/hemin DNAzyme. Analytical Biochemistry. 517, 18-21 (2017).
  21. Du, J., Xu, Q., Lu, X., Zhang, C. Y. A label-free bioluminescent sensor for real-time monitoring polynucleotide kinase activity. Analytical Chemistry. 86 (16), 8481-8488 (2014).
  22. Jiang, C., Yan, C., Jiang, J., Yu, R. Colorimetric assay for T4 polynucleotide kinase activity based on the horseradish peroxidase-mimicking DNAzyme combined with lambda exonuclease cleavage. Analytica Chimica Acta. 766, 88-93 (2013).
  23. Castle, C. D., et al. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae. Nucleic Acids Research. 41 (2), 1135-1150 (2013).
  24. Pillon, M. C., Sobhany, M., Stanley, R. E. Characterization of the molecular crosstalk within the essential Grc3/Las1 pre-rRNA processing complex. RNA. 24 (5), 721-738 (2018).
  25. Geerlings, T. H., Vos, J. C., Raue, H. A. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA. 6 (12), 1698-1703 (2000).
  26. Pillon, M. C., et al. Cryo-EM reveals active site coordination within a multienzyme pre-rRNA processing complex. Nature Structural Molecular Biology. 26 (9), 830-839 (2019).
  27. Solomatin, S., Herschlag, D. Methods of site-specific labeling of RNA with fluorescent dyes. Methods in Enzymology. 469, 47-68 (2009).
  28. Giusti, W. G., Adriano, T. Synthesis and characterization of 5'-fluorescent-dye-labeled oligonucleotides. PCR Methods Application. 2 (3), 223-227 (1993).
  29. Petrov, A., Tsa, A., Puglisi, J. D. Analysis of RNA by analytical polyacrylamide gel electrophoresis. Methods in Enzymology. 530, 301-313 (2013).

Tags

生化学、問題159、ポリヌクレオチドキナーゼ、ポリアクリルアミドゲル、リン酸化反応、RNAリン酸化、Grc3、非放射性アッセイ
小ヌクレオチド基質のポリヌクレオチドリン酸化を測定する非放射性アッセイ
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Pillon, M. C., Stanley, R. E.More

Pillon, M. C., Stanley, R. E. Nonradioactive Assay to Measure Polynucleotide Phosphorylation of Small Nucleotide Substrates. J. Vis. Exp. (159), e61258, doi:10.3791/61258 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter