Die modellierung der intrakraniellen Hirnmetastasen wird durch die Unfähigkeit erschwert, die Tumorgröße und die Reaktion auf die Behandlung mit präzisen und zeitnahen Methoden zu überwachen. Die vorgestellte Methodik koppelt die intrakranielle Tumorinjektion mit einer Magnetresonanztomographie-Analyse, die in Kombination präzise und konsistente Injektionen, eine verbesserte Tierüberwachung und genaue Tumorvolumenmessungen kultiviert.
Die metastasierende Ausbreitung von Krebs ist eine unglückliche Folge des Fortschreitens der Krankheit, aggressiver Krebssubtypen und/oder der späten Diagnose. Gehirnmetastasen sind besonders verheerend, schwer zu behandeln und verleihen eine schlechte Prognose. Während die genaue Inzidenz von Hirnmetastasen in den Vereinigten Staaten nach wie vor schwer abzuschätzen ist, wird sie wahrscheinlich zunehmen, da extrakranielle Therapien bei der Behandlung von Krebs immer wirksamer werden. Daher ist es notwendig, neue therapeutische Ansätze zur Behandlung von Metastasen an diesem Standort zu identifizieren und zu entwickeln. Zu diesem Zweck ist die intrakranielle Injektion von Krebszellen zu einer etablierten Methode geworden, um Hirnmetastasen zu modellieren. Bisher war die Unfähigkeit, das Tumorwachstum direkt zu messen, ein technisches Hindernis für dieses Modell; Die Erhöhung der Verfügbarkeit und Qualität von Bildgebungsmodalitäten für Kleintiere, wie z. B. Magnetresonanztomographie (MRT), verbessert jedoch die Fähigkeit, das Tumorwachstum im Laufe der Zeit zu überwachen und während des Versuchszeitraums Veränderungen im Gehirn abzuleiten. Hierbei wird eine intrakranielle Injektion von murinen Brusttumorzellen in immunkompetente Mäuse gefolgt von MRT nachgewiesen. Der vorgestellte Injektionsansatz nutzt isofluranische Anästhesie und ein stereotaktisches Setup mit einer digital gesteuerten, automatisierten Bohr- und Nadelinjektion, um die Präzision zu verbessern und technische Fehler zu reduzieren. MRT wird im Laufe der Zeit mit einem 9,4 Tesla-Instrument in der Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource gemessen. Tumorvolumenmessungen werden zu jedem Zeitpunkt durch die Verwendung von ImageJ demonstriert. Insgesamt ermöglicht dieser intrakranielle Injektionsansatz eine präzise Injektion, eine tägliche Überwachung und genaue Tumorvolumenmessungen, die zusammen den Nutzen dieses Modellsystems erheblich verbessern, um neue Hypothesen über die Treiber von Hirnmetastasen zu testen.
Hirnmetastasen sind 10-mal häufiger als erwachsene primäre Zentralnervensystem-Tumoren1und wurden in fast jedem soliden Tumortyp mit Lungenkrebs, Brustkrebs und Melanom mit der höchsten Inzidenzberichtet 2. Unabhängig von der primären Tumorstelle führt die Entwicklung von Hirnmetastasen zu einer schlechten Prognose, die oft mit kognitivem Verfall, anhaltenden Kopfschmerzen, Krampfanfällen, Verhaltens- und/oder Persönlichkeitsveränderungen verbunden ist1,3,4,5. In Bezug auf Brustkrebs gab es viele Fortschritte bei der Prävention und Behandlung der Krankheit. Jedoch, 30% der Frauen mit Brustkrebs diagnostiziert werden weiterhin Metastasen entwickeln, und von denen mit Stadium IV Krankheit, etwa 7% (SEER 2010-2013) haben Gehirnmetastasen6,7. Aktuelle Behandlungsmöglichkeiten für Hirnmetastasen beinhalten chirurgische Resektion, stereotaktische Radiochirurgie und/oder die gesamte Gehirnradiotherapie. Doch selbst bei dieser aggressiven Therapie beträgt das mediane Überleben dieser Patienten kurze 8-11 Monate7,8,9. Diese düsteren Statistiken stützen nachdrücklich die Notwendigkeit der Identifizierung und Umsetzung neuer, wirksamer therapeutischer Strategien. So ist es, wie bei allen Krebsarten, die zum Gehirn metastasieren, wichtig, Brustkrebs im Labor richtig zu modellieren, um signifikante Fortschritte auf dem Gebiet zu gewährleisten.
Bis heute haben Forscher eine Vielzahl von Methoden verwendet, um Mechanismen der Metastasierung zum Gehirn zu studieren, jede mit deutlichen Vorteilen und Einschränkungen10,11. Experimentelle Metastasierungsmethoden wie Schwanzvene und intrakardiale Injektion verbreiten Tumorzellen im ganzen Körper und können je nach injizierten Zellen zu einer immensen Tumorbelastung an anderen metastasierenden Stellen führen. Diese Ergebnisse sind dann verwirrend, wenn speziell Metastasen auf das Gehirn zu studieren. Die intrakarotisierende Arterieninjektionsmethode ist vorteilhaft, da sie speziell auf die Gehirnaussaat von Tumorzellen abzielt, aber begrenzt ist, da sie technisch schwierig durchzuführen sein kann. Orthotopische primäre Tumorresektion wird oft als das klinisch relevanteste Modell der Metastasierung betrachtet, da sie die gesamte metastasierende Kaskade rekapituliert. Dennoch beinhaltet dieser Ansatz längere Wartezeiten für spontane Metastasen mit dramatisch niedrigeren Raten von Hirnmetastasen im Vergleich zu den anderen metastasierenden Stellen wie Lymphknoten, Lunge und Leber. Oft müssen Tiere aufgrund der Tumorbelastung an diesen anderen metastasierenden Stellen vor der Entwicklung einer Hirnmetastasierung aus Den Studien entfernt werden. Andere Methoden mit Gehirn tropischen Zelllinien sind wirksam bei der Metastasierung auf das Gehirn; Diese Modelle sind jedoch insofern begrenzt, als sie Zeit brauchen, um sich zu entwickeln und oft ihren Tropismus mit der Ausbreitung verlieren. Angesichts dieser Einschränkungen haben Forscher routinemäßig die intrakranielle Injektionsmethode verwendet, um Krebsmetastasen im Gehirn zu modellieren11,12,13,14 mit unterschiedlichen Methoden15,16,17,18,19. Es wird anerkannt, dass dieser Ansatz in ähnlicher Weise Einschränkungen hat, vor allem, dass er keine Untersuchung von frühen metastasierenden Schritten einschließlich Intravasation aus dem primären Tumor, Penetranz durch die Blut-Hirn-Schranke und Etablierung im Gehirn zulässt. Es ermöglicht den Forschern jedoch zu testen (1) welche tumorabgeleiteten Faktoren das Wachstum im Gehirn vermitteln (z. B. genetische Manipulation eines onkogenen Faktors in Tumorzellen), (2) wie Veränderungen in der metastasierenden Mikroumgebung das Krebswachstum an dieser Stelle verändern (z. B. Vergleich transgener Mäuse mit veränderten stromalen Komponenten) und (3) Wirksamkeit neuartiger therapeutischer Strategien zum Wachstum etablierter Läsionen.
Angesichts des potenziellen Nutzens des intrakraniellen Injektionsmodells ist es absolut notwendig, technische Fehler während der Injektion zu reduzieren und das Tumorwachstum im Laufe der Zeit genau zu überwachen. Die hier beschriebene Methode beinhaltet die kontinuierliche Eindosierung der inhalativen Gasanästhesie und die direkte Implantation von Tumorzellen in das Gehirnparenchym mittels eines stereotaktischen Bohrers und Injektionsständers. Die Verabreichung von Gasanästhetikum ermöglicht eine Feinabstimmung der Tiefe und Länge der Anästhesie sowie eine schnelle und reibungslose Genesung. Ein digital gesteuertes, automatisiertes Bohr- und Nadelinjektionssystem verbessert die Präzision der Injektionsstelle und reduziert technische Fehler, die häufig durch Bohr- und Freihandinjektionsverfahren entstehen. Der Einsatz von Magnetresonanztomographie (MRT) erhöht die Präzision bei der Überwachung des Tumorwachstums, des Tumorvolumens, der Gewebereaktion, der Tumornekrose und der Reaktion auf die Behandlung weiter. MRT ist die bildgebende Modalität der Wahl für Weichgewebe20,21. Diese bildgebende Technik verwendet keine ionisierende Strahlung und wird der Computertomographie (CT) vorgezogen, insbesondere für mehrere Bildgebungssitzungen während einer Studie. MRT hat viel größere Auswahl an verfügbaren Weichteilkontrast als CT oder Ultraschall-Bildgebung (USG) und präsentiert Anatomie im Detail. Es ist empfindlicher und spezifischer für Anomalien im Gehirn selbst. MRT kann in jeder Bildebene durchgeführt werden, ohne das Motiv physisch bewegen zu müssen, wie dies bei der optischen 2D-USG- oder 2D-Bildgebung der Fall ist. Es ist wichtig zu erwähnen, dass der Schädel das MRT-Signal nicht wie bei anderen bildgebenden Modalitäten dämmelt. MRT ermöglicht die Auswertung von Strukturen, die durch Artefakte aus Knochen in CT oder USG verdeckt werden können. Ein weiterer Vorteil ist, dass es viele Kontrastmittel für DIE MRT gibt, was die Läsionsnachweisgrenze mit relativ geringer Toxizität oder Nebenwirkungen erhöht. Wichtig ist, dass die MRT die Überwachung in Echtzeit im Gegensatz zur histologischen Bewertung zum Zeitpunkt der Nekropsie ermöglicht, die bei der Entschlüsselung des Tumorvolumens begrenzt ist. Andere bildgebende Modalitäten, wie z. B. biolumineszierende Bildgebung, sind in der Tat wirksam für die frühe Erkennung und Überwachung von Tumoren im Laufe der Zeit; Diese Methode erfordert jedoch eine genetische Manipulation (z. B. Luziferase/GFP-Tagging) von Zelllinien und lässt keine volumetrischen Messungen zu. Die MRT ist weiter von Vorteil, da sie die Patientenüberwachung widerspiegelt und die nachgeschaltete volumetrische Analyse der MR-Bilder bekanntermaßen stark mit der histologischen Tumorgröße bei Nekropsie22korreliert. Die serielle Überwachung mit MRT-Screening erhöht auch die klinische Überwachung neurologischer Beeinträchtigungen, falls sie auftreten sollten.
Insgesamt ermöglicht uns die vorgestellte Methode der stereotaktischen intrakraniellen Tumorinjektion, gefolgt von serieller MRT, zuverlässige, vorhersehbare und messbare Ergebnisse, um Mechanismen der Hirnmetastasierung bei Krebs zu untersuchen.
Die Nutzung der intrakraniellen Injektion, gefolgt von einer seriellen Überwachung mit MRT, bietet die einzigartige Möglichkeit, das Tumorwachstum mit Tumorvolumengenauigkeit im Laufe der Zeit zu visualisieren. Die Anwendung der digitalen Bildgebungsanalyse ermöglicht die Interpretation von Hirnläsionen für Tumorvolumen, Blutungen, Nekrose und Reaktion auf die Behandlung.
Wie bei jedem Verfahren gibt es wichtige Schritte, die für den Erfolg befolgt werden müssen. Erstens ist eine sorgf?…
The authors have nothing to disclose.
Repräsentative Daten wurden über das National Cancer Institute (K22CA218472 bis G.M.S.) finanziert. Intrakranielle Injektionen werden in der Ohio State University Comprehensive Cancer Center Target Validation Shared Resource (Direktorin – Dr. Reena Shakya) durchgeführt und das MRT wird im Ohio State University Comprehensive Cancer Center Small Animal Imaging Shared Resource (Direktor – Dr. Kimerly Powell) abgeschlossen. Beide gemeinsamen Ressourcen werden über das OSUCCC, das OSUCCC Cancer Center Support Grant vom National Cancer Institute (P30 CA016058), Partnerschaften mit den Colleges und Abteilungen der Ohio State University und etablierte Chargeback-Systeme finanziert.
Surgical Materials | |||
Betadine | Purdue Products | 19-027132 | Povidone-iodine, 7.5% |
Bone Wax | Surgical Specialities | 903 | Sterile and malleable beeswax and isopropyl palmitate |
Buponorphine SR-Lab | ZooPharm | N/A | Long acting injectable analgesic 5 mL (0.5 mg/mL) polymetric formulation |
Cotton tip applicators | Puritan | 25-806 10WC | Sterile long stemmed cotton tip applicators |
Eye Ointment | Puralube | 17033-211-38 | Lubricating petrolatum and mineral oil based ophthalmic ointment |
Handwarmers | Hothands | HH2 | Air-activated heat packs |
Ibuprofen | Up & Up | 094-01-0245 | 100mg per 5mL in liquid suspension |
Isoflurane | Henry Schein INC | 1182097 | Liquid anesthetic for use in anesthetic vaporizer |
Scalpels | Integra Miltex | 4-410 | #10 disposable scalpel blade |
Skin Glue | Vetbond | 1469SB | Skin safe wounds adhesive |
Sterile Dressing | TIDI Products | 25-517 | Individually packed sterile drapes |
Suture | Covidien | SP5686G | 45cm swedged 5-0 monofilament polypropylene suture |
Stereotaxic Unit | |||
High Speed Drill (Foredom) | Kopf | Model 1474 | Max of 38,000 RPM |
Mouse Gas Anesthesia Head Holder | Kopf | Model 923-B | Mouth bar with teeth hole and nosecone |
Non-Rupture Ear Bars | Kopf | Model 922 | Ear bars suitable for mouse applications |
Stereotaxic Instrument | Kopf | Model 940 | Base plate, frame and linear scale assembly with digital readout monitor |
Injector | |||
Injector Needle and syringe | Hamilton | 80366 | 26 gauge needle, 51 mm needle length and 10 μL volume syringe |
Legato 130A automated Syringe Pump | KD Scientific | P/N: 788130 | Programmable touch screen base with automated injector |
Anesthesia Machine | |||
SomnoSuite Low-Flow Digital Vaporizer | Kent Scientific | SS-01 | Digital anesthesia machine |
SomnoSuite Starter Kit for mice | Kent Scientific | SOMNO-MSEKIT | Includes induction chamber, 2x anesthesia syringes, 18" tubing, plastic nosecone, 2x waste aneshesia gas canisters |