Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

मंडीबुलर मुरीन मॉडल में ऑर्थोडोन्टिक टूथ मूवमेंट के दौरान पीडीएल कोलेजन फाइबर की 3डी इमेजिंग

Published: April 15, 2021 doi: 10.3791/62149

Summary

हम चूहों में ऑर्थोडोन्टिक दांत आंदोलन पैदा करने के लिए एक प्रोटोकॉल प्रस्तुत करते हैं और बिना किसी खंड के कोलेजन फाइबर और पीरियोडोन्टल स्नायु के रक्त वाहिकाओं के 3 डी विज़ुअलाइज़ेशन के तरीके हैं।

Abstract

ऑर्थोडोन्टिक दांत आंदोलन बाहरी ताकतों के परिणामस्वरूप नरम और कठोर ऊतक रीमॉडलिंग की एक जटिल जैविक प्रक्रिया है। इन जटिल रीमॉडलिंग प्रक्रियाओं को समझने के लिए, दांत और पीरियोडोन्टल ऊतकों को उनके 3 डी संदर्भ के भीतर अध्ययन करना महत्वपूर्ण है और इसलिए किसी भी खंड और ऊतक कलाकृतियों को कम करना महत्वपूर्ण है। माउस मॉडल का उपयोग अक्सर विकासात्मक और संरचनात्मक जीव विज्ञान में किया जाता है, साथ ही उनके छोटे आकार, उच्च मेटाबोलिक दर, आनुवंशिकी और हैंडलिंग में आसानी के कारण बायोमैकेनिक्स में भी उपयोग किया जाता है। सिद्धांत रूप में यह उन्हें दंत चिकित्सा से संबंधित अध्ययनों के लिए उत्कृष्ट मॉडल भी बनाता है। हालांकि, एक बड़ी बाधा उनके छोटे दांत का आकार, विशेष रूप से मोलर्स है। इस पेपर का उद्देश्य ऑर्थोडोन्टिक दांत आंदोलन पैदा करने के लिए एक कदम प्रोटोकॉल और माउस मंडीबुलर मोलर के पीरियोडोन्टल स्नायु रेशेदार घटक के 3 डी इमेजिंग के लिए दो तरीकों को प्रदान करना है। प्रस्तुत पहली विधि एक माइक्रो सीटी सेटअप पर आधारित है जो ताजा कोलेजन ऊतकों के चरण वृद्धि इमेजिंग को सक्षम करता है। दूसरी विधि एथिल सिनामेट का उपयोग करके एक हड्डी समाशोधन विधि है जो बिना किसी सेक्शनिंग के हड्डी के माध्यम से इमेजिंग को सक्षम बनाती है और अंतर्जात फ्लोरेसेंस को बरकरार रखता है। Flk1- Cre जैसे रिपोर्टर चूहों के साथ इस समाशोधन विधिकासंयोजन; TdTomato ने पीडीएल और अल्वेलार हड्डी में 3 डी वैक्यूलेचर को छवि देने के लिए अपनी तरह का पहला अवसर प्रदान किया।

Introduction

ऑर्थोडोन्टिक टूथ मूवमेंट (ओटीएम) में मूल अंतर्निहित जैविक प्रक्रिया बोन रीमॉडलिंग है। इस रीमॉडलिंग प्रक्रिया के लिए ट्रिगर को पीरियोडोन्टल स्नायु (पीडीएल) जैसे एक्सट्रासेलुलर मैट्रिक्स (ईसीएम) तनाव, परिगलन के साथ-साथ रक्त वाहिका विनाश औरगठन 1,2,3की संरचना में परिवर्तन के लिए जिम्मेदार ठहराया गया है। अल्वेलर बोन रीमॉडलिंग के लिए अन्य संभावित ट्रिगर हड्डी में ऑस्टियोसाइट्स द्वारा बल संवेदन के साथ-साथ अल्वेलर हड्डी के यांत्रिक विरूपण से संबंधित हैं; हालांकि ओटीएम में उनकी भूमिका अभी भी पूरी तरह से स्पष्ट नहीं है4,5.

ओटीएम के दौरान पीडीएल के संरचना-कार्य संबंधों को उजागर करने के उद्देश्य से कई अध्ययनों के बावजूद, एक स्पष्ट कार्यात्मक तंत्र को अभी तक परिभाषित किया जाना है6,7। इसका प्रमुख कारण दो कठोर ऊतकों (सीमेंटम और अल्वियोलर हड्डी) के बीच स्थित एक नरम ऊतक (पीडीएल) के डेटा को वापस लाने में चुनौती है। संरचनात्मक जानकारी एकत्र करने के लिए स्वीकार किए जाते हैं तरीकों आमतौर पर निर्धारण और खंड है कि बाधित और पीडीएल संरचना को संशोधित करने की आवश्यकता है। इसके अलावा, इनमें से अधिकांश तरीके 2D डेटा प्राप्त करते हैं जो भले ही विकृत न हो, केवल आंशिक और स्थानीयकृत जानकारी दें। चूंकि पीडीएल इसकी संरचना और कार्य में एक समान नहीं है, इसलिए एक दृष्टिकोण जो पूरे दांत-पीडीएल-हड्डी परिसर की अक्षुण्ण 3 डी संरचना को संबोधित करता है।

यह पेपर चूहों में ओटीएम पैदा करने के लिए एक विधि और दो तरीकों का वर्णन करेगा जो नमूने के किसी भी खंड के बिना पीडीएल में कोलेजन फाइबर के 3 डी दृश्य को सक्षम करते हैं।

मुरीन मॉडल व्यापक रूप से चिकित्सा, विकासात्मक जीव विज्ञान, दवा वितरण और संरचनात्मक अध्ययन में में वीवो प्रयोगों के लिए उपयोग किया जाता है । वे आनुवंशिक रूप से समाप्त करने या विशिष्ट प्रोटीन और कार्य को बढ़ाने के लिए संशोधित किया जा सकता है; वे तेजी से, दोहराने योग्य और उम्मीद के मुताबिक विकास नियंत्रण प्रदान करते हैं; वे भी अपने छोटे आकार8कारण इमेज करने के लिए आसान कर रहे हैं . उनके कई फायदों के बावजूद, दंत चिकित्सा अनुसंधान में माउस मॉडल का उपयोग अक्सर नहीं किया जाता है, खासकर जब नैदानिक जोड़तोड़ की आवश्यकता होती है, ज्यादातर छोटे आकार के दांतों के कारण। चूहों9,10, 11,कुत्तों12, 13,सूअर14,15,16और बंदरों 17जैसे पशु मॉडल चूहों की तुलना में अधिक बार उपयोग किए जाते हैं। उच्च-रिज़ॉल्यूशन इमेजिंग तकनीकों के हालिया विकास के साथ, ओटीएम में जटिल प्रक्रियाओं को समझने के लिए माउस मॉडल का उपयोग करने के फायदे कई हैं। यह पेपर लगातार बल स्तर के साथ मंडीबल में मोलर दांत का एक मेसियल आंदोलन उत्पन्न करने के लिए एक विधि प्रस्तुत करता है जो हड्डी के रीमॉडलिंग को ट्रिगर करता है। कृंतक में अधिकांश ओटीएम प्रयोग मैक्सिला में किए जाते हैं, क्योंकि मंडली की गतिशीलता और जीभ की उपस्थिति एक और जटिलता स्तर जोड़ती है। हालांकि, 3 डी संरचनात्मक अखंडता वांछित होने पर मंडीबल के कई फायदे हैं। इसे पूरी हड्डी के रूप में आसानी से विच्छेदित किया जा सकता है; कुछ प्रजातियों में इसे रेशेदार सिम्फिसिस के माध्यम से दो हेमी-मंडलियों में अलग किया जा सकता है; यह कॉम्पैक्ट, फ्लैट है और इसमें बिना किसी साइनस रिक्त स्थान के केवल दांत होते हैं। इसके विपरीत, मैक्सिला खोपड़ी का एक हिस्सा है और अन्य अंगों और संरचनाओं से निकटता से संबंधित है, इस प्रकार संबंधित दांतों के साथ अल्वेलर हड्डी को विच्छेदन करने के लिए व्यापक खंड की आवश्यकता होती है।

एक उच्च रिज़ॉल्यूशन माइक्रो-सीटी के अंदर एक लोडिंग प्रणाली के साथ मिलकर घर में आर्द्रता कक्ष का उपयोग करना जो चरण वृद्धि को सक्षम बनाता है, हमने 3 डी में ताजा रेशेदार ऊतकों की कल्पना करने के लिए एक विधि विकसित की, जैसाकि पहले9,18,19,20,21,22, 23वर्णित है। जानवर को बिना किसी धुंधला या निर्धारण के बलिदान करने के तुरंत बाद ताजा ऊतकों को स्कैन किया जाता है, जो ऊतक कलाकृतियों के साथ-साथ बायोमैकेनिकल गुणों के परिवर्तन को कम करता है। इन 3डी डेटा का उपयोग19और वर्णित फाइबर के वितरण और दिशा विश्लेषण के लिए किया जा सकता है ।

यहां प्रस्तुत दूसरी 3 डी पूरी ऊतक इमेजिंग विधि मंडीबल के ऑप्टिकल समाशोधन पर आधारित है जो बिना किसी खंड के हड्डी के माध्यम से पीडीएल फाइबर की इमेजिंग को सक्षम बनाता है। दिलचस्प बात यह भी हड्डी के कोलेजन फाइबर के दृश्य सक्षम बनाता है, लेकिन यह यहां चर्चा नहीं की जाएगी । सामान्य तौर पर, ऊतक समाशोधन के लिए दो तरीके हैं। पहला जलीय-आधारित समाशोधन है जहां नमूना एक सरल विसर्जन, हाइपरहाइड्रेशन या हाइड्रोगेल एम्बेडिंग के माध्यम से 1.4 से अधिक अपवर्तक सूचकांक के साथ एक जलीय समाधान में डूबा हुआ है। हालांकि, यह विधि पारदर्शिता के स्तर के साथ-साथ ऊतक के संरचनात्मक संरक्षण में सीमित है और इसलिए ऊतक के निर्धारण की आवश्यकता होती है। दूसरी विधि जिसमें अत्यधिक पारदर्शी नमूने लिए जाते हैं और निर्धारण की आवश्यकता नहीं होती है, वह है सॉल्वेंट-आधारित समाशोधन विधि24,25. हमने मंडीबुलर नमूनों के लिए एथिल-3-फेनिलोप-2-एनोएट (एथिल सिनामेट, ईसीआई) के आधार पर एक संशोधित सॉल्वेंट-आधारित समाशोधन विधि उत्पन्न की। इस विधि में गैर-विषाक्त खाद्य-ग्रेड समाशोधन एजेंट, न्यूनतम ऊतक सिकुड़न और फ्लोरोसेंट प्रोटीन के संरक्षण का उपयोग करने के फायदे हैं।

Subscription Required. Please recommend JoVE to your librarian.

Protocol

सभी पशु प्रयोगों की देखभाल और प्रयोगशाला जानवरों के उपयोग और हार्वर्ड विश्वविद्यालय संस्थागत पशु देखभाल और उपयोग समिति (प्रोटोकॉल संख्या ०१८४०) से दिशा निर्देशों के लिए NIH के दिशा निर्देशों के अनुपालन में प्रदर्शन किया गया ।

1. ऑर्थोडोन्टिक टूथ मूवमेंट

  1. माउस बिस्तर उत्पन्न करने के लिए, एक वेज के आकार, 45 डिग्री कोण वाले हेडरेस्ट के साथ एक फ्लैट प्लास्टिक प्लेटफॉर्म का उपयोग करें। प्लास्टिक बॉक्स को काटकर हेडरेस्ट तैयार किया जा सकता है।
    1. हेडरेस्ट और टेबल प्लेन के बीच लगभग 30 डिग्री कोण उत्पन्न करने के लिए मंच के सिर के अंत को ऊंचा करें। ऊपरी छेदकों को पकड़ने के लिए सिर की ओर अंत में एक तुला मोटी कागज क्लिप (व्यास में 0.036") संलग्न करें।
    2. पूंछ के अंत पर, एक ऊंचा सतह उत्पन्न करें जिसमें निचले छेदकों को पकड़ने के लिए एक आर्थोडोन्टिक पावर चेन संलग्न की जा सकती है। एक उदाहरण मंच के लिए चित्रा 1 देखें।
  2. 10 मिलीग्राम/किलोग्राम और केटामाइन 100 मिलीग्राम/किलोग्राम पर जाइलाज़ीन के इंट्रापेरिटोनियल इंजेक्शन द्वारा माउस को 1 मिलीग्राम सिरिंज और 27 गेज सुई का उपयोग करके एनेस्थेटाइज करें।
  3. कस्टम-निर्मित मंच पर एनेस्थेटाइज्ड माउस रखें और पेपरक्लिप लूप पर ऊपरी छेदक को हुक करके ऊपरी जबड़े को स्थिर करें। निचले छेदकों पर झुका ऑर्थोडोन्टिक पावर चेन के साथ माउस निचले जबड़े को खोलें। गालों को मिनी कोलीबरी माउथ रिट्रैक्टर से मुकर कर रखें।
  4. एक शल्य माइक्रोस्कोप या किसी अन्य स्टीरियोस्कोप के नीचे मंच रखें जो 5-6x आवर्धन तक पहुंच सकता है।
  5. कॉर्नियल डिहाइड्रेशन को रोकने के लिए माउस आंखों पर 50 माइक्रोन नमकीन (लगभग 1 बूंद) लागू करें। हर 20 मिनट खारा मंगाता है।
  6. लंबाई में एक एल्यूमीनियम तार (0.08 मिमी व्यास) 1 सेमी का एक टुकड़ा काटें। इंटरप्रोक्सीमल क्षेत्र में बुक्कल साइड से तार को स्लाइड करें, जो माइक्रोसर्जिकल सुई धारक का उपयोग करके पहले और दूसरे मोलर्स के बीच संपर्क बिंदु को बेलो करता है। वसंत अंत में पिरोया जा करने के लिए पहले मोलर के सामने 2 मिमी मुक्त किनारे छोड़ दें।
  7. लंबाई में 7 से 9 धागे के आसपास निकल टाइटेनियम (NiTi) कुंडली का एक टुकड़ा काटें।
    नोट: कुंडली के लोचदार गुण ऑर्थोडोन्टिक आंदोलन के लिए निरंतर बल प्रदान करेंगे। कुंडली की कुल अप्रशिक्षित लंबाई चीरा और मोलर के बीच के अंतर से कम होनी चाहिए। ध्यान रखें कि दांत को कुंडली लंगर के लिए प्रत्येक छोर पर एक अतिरिक्त 2 धागे की जरूरत है। माइक्रो सीटी स्कैन के दौरान बीम सख्त जैसे स्कैनिंग कलाकृतियों को कम करने के लिए एल्यूमीनियम वायर का चयन किया जाता है।
  8. निचले पहले मोलर और निचले छेदक के बीच NiTi कॉइल स्प्रिंग (0.15 मिमी तार व्यास, 0.9 मिमी आंतरिक कुंडल व्यास; 10 ग्राम का बल बचाता है) डालें। चरण 1.6 में पहले मोलर के चारों ओर डाले गए तार लिगेचर का उपयोग करें, मोलर साइड पर कुंडली को ठीक करने के लिए तार को कुंडली वसंत के 2 धागे के चारों ओर कसकर मोड़ें।
  9. एक समान बल स्तर सुनिश्चित करने के लिए, पहले मोलर और छेदक के बीच बिल्कुल 3 सक्रिय धागे का उपयोग करें। कुंडली को लंगर लगाने के लिए छेदक के ऊपर चीरा और लूप 2 से 3 अप्रशिक्षित धागे से पावर चेन को अस्थायी रूप से हटा दें। धागे को छेदक मुक्त gingival मार्जिन के नीचे स्लाइड करें।
  10. कुंडली की चीरा सीमा पर प्रवाहयोग्य समग्र राल की एक परत रखें और इसे दंत चिकित्सा प्रकाश के साथ ठीक करें। राल का इलाज करने के बाद पावर चेन बदलें।
  11. इसी इलाज की रोशनी का इस्तेमाल करते हुए 20 एस के लिए निती कुंडली गर्म करें। इससे निती कुंडली कस जाएगी। समाप्त प्लेसमेंट चित्रा 1C दिखायागया है ।
  12. या तो कॉन्ट्रालेटरल साइड को बरकरार छोड़ दें या पहले और दूसरे मोलर्स के बीच तार जैसे नकली डालें।
  13. रिकवरी तक माउस को गर्म रखने के लिए एनेस्थेटाइज्ड माउस को गर्म रोशनी के नीचे रखें।
  14. माउस को एक व्यक्तिगत पिंजरे में वापस रखें और दैनिक निगरानी करें। ऑर्थोडोन्टिक मूवमेंट के दौरान कोई डाइट चेंज जरूरी नहीं है।
    नोट: एक तरफ OTM डिवाइस कुछ असुविधा का कारण बनता है, लेकिन खिला ख़राब नहीं करता है । हालांकि, असुविधा की अतिरिक्त मात्रा के कारण दोनों पक्षों पर उपकरणों को डालने की सलाह नहीं दी जाती है। दर्द की दवा तब तक आवश्यक नहीं है जब तक कि दर्द के बाहरी लक्षण न देखे जाएं।

2. ताजा हेमी-मंडीबल्स में पीडीएल फाइबर का माइक्रो-सीटी स्कैन

  1. हेमी-मंडीबल बढ़तेहुए (चित्रा 2)
    1. ऑर्थोडोन्टिक आंदोलन की वांछित अवधि के बाद, गर्भाशय ग्रीवा अव्यवस्था के माध्यम से माउस का बलिदान करें। मंडीबल निकालें और हेमी-मंडीबल्स में अलग करें।
      नोट: चूंकि नमूना तय नहीं किया जाएगा, इसलिए जबड़े का विच्छेदन करना और जितनी जल्दी हो सके, आदर्श रूप से 30 मिनट के भीतर बढ़ना महत्वपूर्ण है।
    2. एक साफ लिंट-फ्री पोंछ के साथ आसपास के मुलायम ऊतक को धीरे-धीरे निकालें।
    3. कम से कम 4x आवर्धन के साथ एक स्टीरियो माइक्रोस्कोप के तहत माइक्रोसर्जिकल कैंची और चिमटी का उपयोग कर ऑर्थोडोन्टिक डिवाइस निकालें।
    4. पानी के साथ नम लिंट-फ्री वाइप के टुकड़े के साथ 1.5 एमएल वॉल्यूम, माइक्रो-सेंट्रलाइज ट्यूब में सैंपल नम रखें।
    5. पैक करने योग्य डेंटल कंपोजिट राल को स्टेज पर सैंपल स्लॉट में रखें, फिर फ्रेश हेमी-मंडीबल को कंपोजिट में रखें । बढ़ते से पहले सुनिश्चित करें कि दंत समग्र के संपर्क में हड्डी की सतह किसी भी नरम ऊतकों और सूखी से मुक्त है, अन्यथा दंत समग्र ठीक से इलाज नहीं होगा।
    6. जब तक पहला मोलर मंच के मिडलाइन नाली पर केंद्रित न हो जाए तब तक हेमी-मंडीबल की स्थिति को समायोजित करें। सुनिश्चित करें कि ऑक्सक्लूसल सतह क्षैतिज है। स्थिति से संतुष्ट होने पर समग्र का इलाज करें।
      नोट: दंत कंपोजिट की अतिरिक्त छोटी मात्रा में हेमी-मंडीबल और/या चीरा के पार के किनारों पर रखा जा सकता है नमूना स्थिर करने में सहायता करने के लिए ।
    7. नमूना चरण में आर्द्रता पूल के अंदर घटा लिंट-फ्री वाइप रखें। पहले मोलर की ऑक्सीकल सतह पर दंत समग्र रखें। कक्ष को बंद करने से पहले, सुनिश्चित करें कि नमूना स्तर पर एक्स-रे पथ को कुछ भी अवरुद्ध नहीं करता है।
    8. माइक्रो सीटी में कक्ष प्रत्यय। माइक्रो सीटी नमूना चरण में कक्ष पेंच ताकि इमेजिंग के दौरान आंदोलन को कम किया जाए।
    9. एक्स-रे चालू करें और निहाई को लंबवत कम करते समय 2D छवियां लें, जब तक कि निहाई की नोक समग्र से घिरा न हो लेकिन बल में कोई वृद्धि का पता नहीं चला है।
    10. एक बार निहाई को कंपोजिट में एम्बेडेड करने के बाद एक्स-रे स्रोत को बंद कर दिया जाए। फिर, माइक्रो-सीटी चैंबर खोलें और स्पष्ट प्लेक्सीग्लास विंडो के माध्यम से समग्र का इलाज करें।
  2. माइक्रो-सीटी सेटिंग्स
    1. स्रोत वोल्टेज को 40 केवी और वर्तमान में 200 माइक्रोन सेट करें। 10x आवर्धन डिटेक्टर का उपयोग करके, नमूने को देखने के फ्रेम के भीतर रखें। कैप्चर की गई छवियों के लिए 2 की बिनिंग का उपयोग करें।
      नोट: चूंकि पीडीएल हड्डी और दांत की तुलना में काफी कम घना है, इसलिए पीडीएल की कल्पना करने के लिए उच्च शक्ति और एक्सपोजर समय की आवश्यकता होती है। यह प्रोटोकॉल पीडीएल की कल्पना के लिए सेटिंग्स प्रदान करेगा।
    2. 25 s करने के लिए एकल छवि जोखिम समय सेट करें। नमूना चरण के रोटेशन को 183 डिग्री या उससे अधिक की सीमा तक सेट करें। 2500 अनुमानों के लिए स्कैन सेट करें। किसी भी एक्स-रे स्रोत फिल्टर का उपयोग न करें, जिसके परिणामस्वरूप स्कैन में प्रत्येक तरफ 0.76 माइक्रोन का स्वर आकार होता है।
    3. माइक्रो सीटी दिशानिर्देशों के अनुसार उचित पुनर्निर्माण के लिए एक संदर्भ स्कैन एकत्र करें। कुल अनुमानों के रूप में संदर्भ छवियों की 1/3 संख्या का उपयोग करें । बैक प्रोजेक्शन फ़िल्टर किए गए एल्गोरिदम का उपयोग करके, अतिरिक्त बिनिंग के बिना मात्रा का पुनर्निर्माण करें।

3. समाशोधन विधि(चित्रा 3)

  1. पांच 1.5 एमएल माइक्रो सेंट्रलाइज ट्यूब तैयार करें।
  2. 1.5 एमएल माइक्रो-सेंट्रलाइज ट्यूबों में निम्नलिखित समाधानों में से 1.4 एमएल तैयार करें: फॉस्फेट बफर खारा (पीबीएस), डिओनाइज्ड (डीआई) पानी में 50% इथेनॉल (एटोह), डीआई पानी में 70% एटोह, और 100% एटोह की दो ट्यूब में 4% पैराफॉर्मलडिहाइड (पीएफए)।
    नोट: पीएफए का उपयोग नमूने के निर्धारण के लिए किया जाता है। ईसीआई क्लीयरिंग अनफिक्स्ड सैंपल्स पर भी काम करेगी । अनसर्गेड नमूनों को साफ करने के लिए, बस पीएफए कदम को छोड़ दें।
  3. 4% पीएफए में विच्छेदित हेमी-मंडीबल रखें। एल्यूमीनियम पन्नी के साथ कवर और 6 घंटे के लिए कमरे के तापमान पर कोमल सेटिंग पर घुमाव पर जगह है ।
  4. हेमी-मंडीबल को 50% एटोह में ले जाएं। इसे 16 घंटे के लिए प्रकाश से ढके रॉकर पर रखें।
  5. हेमी-मंडीबल को 70% एटोह में ले जाएं। इसे 16 घंटे के लिए प्रकाश से ढके रॉकर पर रखें।
  6. हेमी-मंडीबल को 100% एटोह में ले जाएं। इसे 16 घंटे के लिए प्रकाश से ढके रॉकर पर रखें।
  7. दोहराएं 3.6। दूसरे 100% EtOH ट्यूब में।
  8. एक ग्लास या पॉलीप्रोपाइलीन ट्यूब में ईसीआई का 5 एमएल तैयार करें।
    नोट: भारत निर्वाचन आयोग पॉलीस्टीरिन को भंग करता है, लेकिन पॉलीप्रोपाइलीन नहीं। इसके अलावा, यदि फ्लोरोसेंट प्रोटीन वाले ऊतक का उपयोग नहीं किया जाता है तो नमूना समाशोधन प्रक्रिया के दौरान प्रकाश के संपर्क में आ सकता है।
  9. हेमी-मंडीबल को ईसीआई ट्यूब पर ले जाएं। एल्यूमीनियम पन्नी के साथ ट्यूब को कवर करें और कम से कम 12 घंटे के लिए कोमल सेटिंग पर घुमाव पर रखें।
    नोट: प्रोटोकॉल यहां रोका जा सकता है । निर्जलित नमूना कमरे के तापमान पर ईसीआई में संग्रहीत किया जा सकता है। ई-2ए देश का हिमाकत या गलन बिंदु 6.5 से 8.0 डिग्री सेल्सियस है। 4 डिग्री सेल्सियस पर स्टोर न करें।
  10. हेमी-मंडीबल फ्लोरेसेंस माइक्रोस्कोप के साथ इमेजिंग के लिए तैयार है।
    नोट: इमेजिंग के दौरान, नमूना ऑप्टिकल रूप से पारदर्शी रहने के लिए ईसीआई में डुबोया जाना चाहिए।

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

यह पेपर बिना किसी सेक्शनिंग के पीडीएल के अंदर कोलेजन फाइबर की 3डी इमेजिंग के लिए ओटीएम के साथ-साथ दो तरीकों का उत्पादन करने की विधि प्रस्तुत करता है। पशु अनुसंधान उद्देश्यों के लिए, जब दांतों का संरेखण आवश्यक नहीं होता है, तो दांत आंदोलन को ऑर्थोडोन्टिक माना जाता है यदि यह सभी जड़ स्तरों पर अल्वोलार हड्डी की रीमॉडलिंग उत्पन्न करता है। एक विश्वसनीय ओटीएम उत्पन्न करने के लिए दांतों पर लगातार बल स्तर की आवश्यकता होती है। यहां, एक सक्रिय आकार-स्मृति एनआईटीआई कुंडल का उपयोग 7 दिनों के प्रायोगिक समय में 10 ग्राम का एक सुसंगत बल उत्पन्न करने के लिए किया जाता है और यदि आवश्यक हो तो उससे आगे। यहां वर्णित कुंडली सक्रियण(चित्र 1)मार्टेन्स्टिक चरण के भीतर एनआईटीआई कुंडली में तनाव उत्पन्न करता है और कुंडली को हिस्टीरेसिस स्थिति में लाता है, जो दांत पर लगातार तनाव प्रदान करता है। कुंडली प्रविष्टि के बाद इलाज प्रकाश के साथ कुंडली वार्मिंग भी सुनिश्चित करें कि एलॉय अपने ऑस्टेनटिक रूप में बदलाव होगा और आकार स्मृति प्रभाव जगह ले जाएगा ।

यहां हम 9 सप्ताह पुराने, पुरुष चूहों से प्रतिनिधि परिणाम दिखाते हैं । ओटीएम के 7 दिनों के बाद पहले और दूसरे मोलर्स के मुकुट के बीच औसत मेसियोडिस्टल स्पेस 40 माइक्रोन है जैसा कि माइक्रो-सीटी में मोलर्स की इंटरप्रोक्सीमल सतहों के बीच मापा जाता है जिसमें 1X आवर्धन (एन = 12, st.dev) है। = 15 माइक्रोन)(चित्रा 1E)। मेसिओडिस्टल दिशा में पीडीएल की औसत जगह ओटीएम(चित्रा 4B)के 7 दिनों से पहले और बाद में 80 माइक्रोन है। यह पुष्टि करता है कि पहले मोलर का अनुवाद mesially और 7 दिन एक माउस मॉडल में ओटीएम उत्पन्न करने के लिए एक पर्याप्त समय है, जबकि हड्डी अवशोषण और प्रकृति में अपोजिशन(चित्रा 4)की प्रक्रियाओं का उत्पादन । चूहों को एक मानक कठिन फूस आहार खिलाया गया था। कोई आहार परिवर्तन पोस्ट डिवाइस प्रविष्टि किया गया था।

ओटीएम के दौरान दांत-पीडीएल-बोन कॉम्प्लेक्स में परिवर्तनों की कल्पना करने के लिए प्रस्तुत की गई पहली विधि ताजा ऊतकों(चित्रा 4)के चरण-संवर्धित माइक्रो-सीटी इमेजिंग पर आधारित है जिसे पहले9, 18, 19,20,22,23के विस्तार से वर्णित किया गया था। संक्षेप में, या तो एक माइक्रो सीटी या एक सिंक्रोट्रॉन, रेशेदार ऊतक और आर्द्रीकृत वातावरण के यांत्रिक स्थिरीकरण की एक चरण वृद्धि क्षमता प्रदान की, ताजा कोलेजनस फाइबर किसी भी निर्धारण या विषम एजेंटों के बिना कल्पना की जा सकती है । पीडीएल में जो फाइबर देखे जाते हैं वे हैं जो दांत और हड्डी दोनों से जुड़े होते हैं, मुख्य रूप से टाइप I कोलेजन19। 3डी में कल्पना करने का यह अनूठा अवसर एक अक्षुण्ण पीडीएल 3 डी फाइबर घनत्व, फाइबर अभिविन्यास के साथ-साथ दांत के 3 डी आंदोलन के विश्लेषण को सक्षम बनाता है जैसा कि पहले9, 19वर्णित है। विशेष रूप से, यहां हम पीडीएल में रेशेदार नेटवर्क का दृश्य प्रस्तुत करते हैं। समय 0, हड्डी और पीडीएल दोनों में शारीरिक रीमॉडलिंग देखी जा सकती है। रीमॉडलिंग सेलुलर सीमेंटम में भी होती है; हालांकि, यह सीधे प्रस्तुत विधि से संबंधित नहीं है और इसलिए सविस्तार नहीं किया जाएगा। हड्डी-पीडीएल इंटरफेस किसी भी बल आवेदन से पहले ट्रांसवर्स(चित्रा 4A)और सैगिटल(चित्रा 4B)विमानों दोनों में ज्यादातर चिकनी है। कोरोनल प्लेन(चित्रा 4सी)में, बोन-पीडीएल इंटरफेस विशेष रूप से एपिकल क्षेत्र की ओर खुरदरा है जो पुनर्मॉडलिंग संतुलन का संकेत हो सकता है जो अवशोषण की ओर जाता है। ओटीएम(चित्रा 4D-F)के 3 दिनों में, जिस पर पहला मोलर को मामूली रूप से स्थानांतरित किया जाता है (दिशा धराशायी तीर द्वारा दर्शाया जाता है), पीडीएल में फाइबर घनत्व कम हो जाता है (सफेद तीर सिर)। हड्डी-पीडीएल इंटरफेस हड्डी की सतह में गड्ढों के विकास के कारण 0 दिनों की तुलना में खुरदरा है जो पीडीएल26में मुख्य रूप से संपीड़न बलों से जुड़ी ऑस्टियोक्लास्टिक गतिविधि और अस्थि अवशोषण प्रक्रियाओं का संकेत है, हालांकि यहां 3 दिनों में तनाव क्षेत्रों में देखा गया है। पीडीएल के भीतर तनाव वाले क्षेत्रों में ऊतक विनाश का सुझाव दिया गया था27,28 और स्पष्ट रूप से इस विधि का उपयोग कर देखा जा सकता है । किसी न किसी सीमा जड़ों (सफेद तीर) के विभिन्न स्तरों पर देखा जाता है और इसलिए पता चलता है कि दांत आंदोलन प्रकृति में अनुवाद है और न सिर्फ मुकुट की टिपिंग । ओटीएम के 7 दिनों में(चित्रा 4G-I),हड्डी अवशोषण संकेत, जैसे हड्डी के भीतर गड्ढा, किसी न किसी सीमाओं और पीडीएल अंतरिक्ष के विस्तार, सभी विमानों में देखा जाता है, लेकिन औसत पीडीएल अंतरिक्ष OTM के 3 दिनों की तुलना में संकरा है(चित्रा 4D-F)। कुछ क्षेत्रों में हालांकि, हड्डी-पीडीएल सीमा ओटीएम के 7days के बाद चिकनी हो गई है ये क्षेत्र जड़ों की डिस्टल सतहों पर स्थित हैं, जो सबसे अधिक संभावना हड्डी अपोजिशन के लिए एक संकेत है, जैसा कि ओटीएम में मेसियल दिशा में उम्मीद है ।

लंबे माइक्रो सीटी इमेजिंग समय (~ 19 एच) और मंच के रोटेशन के कारण, नमूना के बढ़ते अभी भी नमूना रखने के लिए आवश्यक है । अस्थिर नमूने धुंधला स्कैन में परिणाम होगा। चित्रा 5 प्रस्तुत करता है कि कैसे माइक्रो सीटी स्कैन लग रहा है जब नमूना स्कैन के दौरान चला गया है । दांत और हड्डी धुंधली होती है। न तो पीडीएल फाइबर और न ही ऑस्टियोसाइट्स मनाया जाता है। ऐसी घटनाओं में किसी वस्तु के मार्जिन के आसपास एक सिल्हूट मौजूद होता है। चित्रा 5में, दांत के मुकुट की कई रूपरेखा (तीर) देखी जा सकती है।

अनुसंधान लक्ष्य के आधार पर, प्रस्ताव और PDL फाइबर के दृश्य कम स्कैन समय के लिए व्यापार में बलिदान किया जा सकता है जब केवल कठिन ऊतकों के बारे में जानकारी वांछित है ।

किसी भी खंड के बिना पीडीएल फाइबर के 3 डी विज़ुअलाइज़ेशन के लिए एक पूरक विधि भारत निर्वाचन आयोग(चित्रा 3)का उपयोग करके ऑप्टिकल रूप से मंजूरी दिए गए नमूनों पर ऑप्टिकल माइक्रोस्कोपी के माध्यम से है। इस विधि को निर्धारण के बिना एक नमूने पर इस्तेमाल किया जा सकता है और समाशोधन से पहले ऊतक में मौजूद फ्लोरोसेंट संकेतों को बरकरार रखता है। अमेरिकी टीम से पहले और बाद में हेमी-मंडीबल्स को चित्र 3बी और 3 सीमें दिखाया गया है । जब मंडीबल के रैमस के माध्यम से ग्रिड पेपर देखा जा सकता है तो पीडीएल के पर्याप्त नमूना समाशोधन की पुष्टि की जा सकती है। समाशोधन की मात्रा निर्जलीकरण प्रक्रिया को लंबा करके समायोजित किया जा सकता है। चित्रा 6 एक साफ मंडीबल में अल्वेलर हड्डी और पीडीएल दोनों में कोलेजन फाइबर से दूसरी हार्मोनिक पीढ़ी (एसएचजी) संकेत दिखाता है। इमेजिंग 3 डी में हड्डी के कोलेजन फाइबर एक जटिल प्रक्रिया है, जो अक्सर एफआईबी/एसईएम जैसे इलेक्ट्रॉन माइक्रोस्कोपी तरीकों का उपयोग करती है । हालांकि, भारत-ार आधारित समाशोधन विधि और एसएचजी का उपयोग करते हुए, अल्वेलर बोन फाइबर स्पष्ट रूप से देखे जाते हैं, विशेष रूप से क्षैतिज दिशा में। जब हड्डी की सतह से पीडीएल में गहरे नमूने के माध्यम से अनुवाद, PDL फाइबर स्तर के लिए संक्रमण बहुत स्पष्ट है के रूप में फाइबर अचानक एक ऊर्ध्वाधर एक को अपने अभिविन्यास बदल जाते हैं ।

लाइटशीट माइक्रोस्कोपी का उपयोग हड्डी के माध्यम से फ्लोरोसेंट प्रोटीन इमेजिंग के लिए भी किया जा सकता है। ट्रांसजेनिक Flk1-creसे एक मंजूरी दे दी नमूना के इस मामले में; टीडीटोमा माउस19,29,30,रक्त वाहिकाओं को अस्तर करने वाली फ्लोरोसेंट एंडोथेलियल कोशिकाओं को स्पष्ट रूप से देखा जाता है(चित्र 7 ए,बी, सी, ई)। उचित समाशोधन लाइटशीट माइक्रोस्कोपी के साथ सुगम छवियों को उत्पन्न करने के लिए महत्वपूर्ण है। जब हड्डी पूरी तरह से साफ नहीं हो जाती है, तो पीडीएल के भीतर रक्त वाहिकाओं को नहीं देखा गया(चित्रा 7 डी,एफ)।

Figure 1
चित्रा 1:ऑर्थोडोन्टिक उपकरण प्रविष्टि स्थापित करें। A. जानवर का समर्थन करने और मुंह खुला रखने के लिए प्रयोगशाला-आपूर्ति से बना माउस बिस्तर। शरीर के लिए प्लास्टिक प्लेटफॉर्म (पीपी) 30 डिग्री झुकाव पर है और हेडरेस्ट (एचआर) पीपी की सतह से 45 डिग्री कोण पर है। पीपी के अंत सिर को ऊंचा करने के लिए 2-टियर ट्यूब स्टैंड (टीएस) का उपयोग किया जाता है। पेपर क्लिप लूप (काला तीर) शीर्ष छेदकों को एंकर करता है, और निचले छेदकों पर नीचे ऑर्थोडोन्टिक पावर चेन (सफेद तीर) हुक करता है। मोलर्स के विजुअल इंस्पेक्शन के लिए 5 एमएम व्यास निरीक्षण मिरर का इस्तेमाल किया गया। B. माउस बिस्तर का साइड व्यू। सतहों के बीच कोण चिह्नित हैं (हरे और मजेंटा)। सी. ठीक से रखे गए डिवाइस की प्रतिनिधि छवि। डी. डिवाइस प्रत्यारोपण से पहले निरीक्षण दर्पण के माध्यम से देखा मोलर्स। ई. ऑर्थोडोन्टिक आंदोलन के बाद मोलर्स की प्रतिनिधि छवि। धराशायी लाइनें पहले और दूसरे मोलर्स की रूपरेखा का पता लगाती हैं। एफ. डिवाइस और उसके प्लेसमेंट का आरेख। लाल रेखा पहले मोलर के चारों ओर तार लिगेचर का प्रतिनिधित्व करता है। नारंगी रेखा कुंडली को लंगर देने के लिए उपयोग की जाने वाली प्रवाहयोग्य समग्र राल का प्रतिनिधित्व करती है। एनआईटीआई कॉइल को नीले और लेबल में दिखाया गया है। जी. 7 दिन ऑर्थोडोन्टिक आंदोलन के बाद संलग्न डिवाइस के साथ हेमी-मंडीबल को विच्छेदित किया। ध्यान दें कि 3 कुंडली के धागे अभी कैसे खुले हैं, यह दर्शाता है कि कुंडली 7 दिनों के बाद भी सक्रिय है। स्केल बार = ई और जी में 1 मिमी कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 2
चित्र 2-माइक्रो सीटी इमेजिंग के लिए कस्टम से बने चैंबर में हेमी-मंडीबल घुड़सवार। - माइक्रो सीटी मशीन के भीतर सैंपल चैंबर का पूरा सेट-अप। एक्स-रे स्रोत बाईं ओर और दाईं ओर डिटेक्टर देखा जाता है। लाल आयत नमूना चरण (एसएस) पर कक्ष में घुड़सवार हेमी-मंडीबल की रूपरेखा तैयार करता है। यहां दिखाया गया उदाहरण कक्ष एक यांत्रिक परीक्षण सेट-अप का हिस्सा है, जिसमें मोटर (एम), निविल (ए, सफेद धराशायी लाइनों द्वारा उल्लिखित) और कक्ष के ऊपर निविल शाफ्ट (एएस) शामिल हैं। पूरा सेट अप सीटी स्टेज पर खराब हो गया है । इनसेट छवि लाल उल्लिखित क्षेत्र के करीब-ऊपर दिखाती है, जिसमें अंदर नमूना के साथ आर्द्रता कक्ष होता है। B. नमूना चरण पर चढ़कर नमूने का शीर्ष दृश्य। इमेजिंग के दौरान आर्द्रता बनाए रखने के लिए परिधि पर आर्द्रता पूल (ग्रे एरो) बनाए जाते हैं। बीच में गोलाकार चरण पर, हेमी-मंडीबल को तिरछा गहरे नाली (काला तीर) में रखा जा सकता है। एक पतली नाली (सफेद तीर) नमूने को उन्मुख करने में सहायता करने के लिए मंच के मिडलाइन को चिह्नित करता है। सी. नमूना नाली के साथ परिपत्र चरण का आरेख। नाली का तिरछा मंडीबल का समर्थन करता है और मोलर्स को जड़ों की ऊर्ध्वाधर धुरी के साथ घुड़सवार होने की अनुमति देता है। डी. प्रतिनिधि माइक्रो-सीटी 2डी स्लाइस हेमी-मंडीबल नमूने की 3डी वॉल्यूम छवि के साथ संयुक्त। यहां अंतरप्राक्सिमल गैप 52 माइक्रोन है। नमूना नीचे नमूना चरण पर मुहिम शुरू की है (नहीं दिखाया गया है) और दंत चिकित्सा समग्र (डीसी) द्वारा शीर्ष पर निविल (ए) । स्केल बार = 500 माइक्रोन. कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें।

Figure 3
चित्रा 3। विच्छेदित माउस हेमी-मंडीबल्स के लिए ईसीआई-आधारित समाशोधन विधि। A. विच्छेदित हेमी-मंडीबल 4% पीएफए, 50% एटोह, 70% एटोह और 100% एटोह में लगातार डूबी हुई है। निर्जलीकरण के बाद, हेमी-मंडीबल को इमेजिंग तक न्यूनतम 12 घंटे के लिए भारत में संग्रहीत किया जाता है। B. विच्छेद के तुरंत बाद हेमी-मंडीबल। सी. समाशोधन पूरा होने के बाद हेमी-मंडीबल। स्केल बार = 5 मिमी कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें।

Figure 4
चित्रा 4:आर्थोडोन्टिक आंदोलन के विभिन्न चरणों में एक ताजा नमूने के पीडीएल के प्रतिनिधि इन-सीटू माइक्रो-सीटी स्कैन। ए-सी, कोई ऑर्थोडोन्टिक आंदोलन। A. हेमी-मंडीबल के ट्रांसवर्स प्लेन में माइक्रो-सीटी 2डी इमेज जिसमें अल्वियोलर बोन के एल-बुकल, एल-लिंगुअल साइड्स के अंदर मेसियल (एम) और डिस्टल (डी) की जड़ें दिखाई देती हैं । दांत की जड़ों और अल्वियोलर हड्डी के बीच में, पीडीएल अंतरिक्ष और इसके भीतर फाइबर स्पष्ट रूप से देखे जाते हैं। धनु विमान में B. 2D छवि। कोरोनल प्लेन में सी 2डी इमेज। डी-ई, ओटीएम के 3 दिनों के बाद 2D छवियां, कोलेजन फाइबर घनत्व में कमी के साथ पीडीएल में क्षेत्रों में तीर सिर बिंदु, हड्डी अवशोषण के क्षेत्रों में सफेद तीर बिंदु। जी-1, ओटीएम के 7 दिनों के बाद 2D छवियां, हड्डी अपोजिशन के क्षेत्रों में काले तीर बिंदु। स्केल बार = 150 माइक्रोन. कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें।

Figure 5
चित्र 5:सगितीय विमान में 2डी माइक्रो-सीटी छवि, स्कैन के दौरान दांत की आवाजाही के कारण दांत और हड्डी दोनों की धुंधली संरचनाएं दिखाती है। तीर दांत की कई बोर्ड लाइनों पर इंगित करते हैं, जो इसके आंदोलन का संकेत देते हैं। स्केल बार 150 माइक्रोन. कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 6
चित्रा 6:भारत सरकार ने दूसरी हार्मोनिक पीढ़ी (एसएचजी) के साथ छवि वाले पहले मोलर को दिखाने वाले मंडीबल को मंजूरी दे दी। एक ऐसे क्षेत्र में सफेद तीर बिंदु जहां पीडीएल के कोलेजन फाइबर देखे जाते हैं, ऊर्ध्वाधर अभिविन्यास, काले तीर बिंदु को एक ऐसे क्षेत्र में ध्यान दें जहां पीडीएल के ऊर्ध्वाधर फाइबर के साथ-साथ अल्वेलर हड्डी के क्षैतिज फाइबर दोनों देखे जाते हैं। टी-टूथ, एफ-फर्नेस, एबी-अल्वियोलर बोन, एमआर-मेशियल रूट, डीआर डिस्टल रूट, स्केल बार 150 माइक्रोन। छवियों को 1.33-1.56 के आरआई के साथ समाधान के लिए 20X बहु-विसर्जन लेंस का उपयोग करके प्राप्त किया गया था। एक्सटिटेशन लेजर 10% पावर पर 860एनएम पर सेट किया गया था। पिक्सेल आवास समय: 0.51μs; स्कैन मोड: फ्रेम; औसत: 16; डिटेक्टर प्रकार: नॉनडस्कैन्ड फोटोमुलिटेप्टल ट्यूब डिटेक्टर; डिटेक्टर गेन 800V. कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Figure 7
चित्रा 7। ईसीआई-क्लियर Flk1-Cre;tdTomato माउस की लाइटशीट माइक्रोस्कोप छवियां। A. इष्टतम नियंत्रण हेमी-मंडीबल को मंजूरी दे दी। हड्डी (तीर सिर) और पीडीएल अंतरिक्ष (तीर) के भीतर रक्त वाहिकाओं का नेटवर्क दिखाई देता है। B. पहले मोलर (ए में उल्लिखित लाल) के मेसियोलिंगुअल क्षेत्र का इनसेट रक्त वाहिकाओं को दिखाता है। C. 7 दिन के ओटीएम हेमी-मंडीबल और डी को बेहतर ढंग से मंजूरी दी । उप-इष्टतम ने हेमी-मंडीबल को मंजूरी दे दी। ई. धनु विमान में पैनल सी की 2D छवि, छवि हड्डी (ग्रे तीर) और पीडीएल अंतरिक्ष (सफेद तीर) में अच्छी तरह से परिभाषित रक्त वाहिकाओं को दर्शाता है। एफ. पैनल डी की दो-आयामी स्लाइस छवि, ई में छवियों के समान क्षेत्र, जिसके परिणामस्वरूप एक धुंधली छवि होती है। स्केल बार ए, सी, डी = 500 माइक्रोन, बी, ई, एफ = 100 माइक्रोन इमेजेज को डिटेक्टर के रूप में कैमरे का उपयोग करके 5X योजना उद्देश्य के साथ लिया गया था। एक्सिग्नेशन लेजर 4% पावर पर 561 एनएम था। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहां क्लिक करें ।

Subscription Required. Please recommend JoVE to your librarian.

Discussion

आकार, आनुवंशिकी और हैंडलिंग लाभ के कारण चूहों में ओटीएम उत्पन्न करना अत्यधिक वांछित है। मंडीबल का उपयोग ऊतक विच्छेदन के साथ-साथ नमूना तैयारी और इमेजिंग दोनों के मामले में एक आसान हैंडलिंग प्रदान करता है। यहां हमने ओटीएम के 7 दिनों के भीतर हड्डी के अंदर दांत के ट्रांसलेशनल मूवमेंट के साथ ओटीएम जेनरेट करने की विधि पेश की । इस प्रोटोकॉल का उपयोग करके, दांत आंदोलन की समग्र अवधि को बढ़ाया जा सकता है, क्योंकि सक्रिय कुंडल लगभग 1 मिमी तक के आंदोलन के लिए निरंतर बल स्तर बचाता है। हालांकि कुंडली का मध्य पक्ष चीरे लगाने के लिए तय होता है, जो लगातार फटता जा रहा है। नतीजतन, बल वैक्टर धीरे-धीरे बदल जाएगा और एक्सट्रूज़न बल पैदा करना शुरू कर देगा। यदि मेसियल एंड पर अटैचमेंट लेवल का एडजस्टमेंट हर 7 दिन में किया जाए तो इससे बचा जा सकता है ।

पीडीएल ओटीएम के लिए सर्जक है, इसलिए ओटीएम के विभिन्न चरणों के दौरान इसकी संरचना और कार्य को समझना बहुत महत्वपूर्ण है। हालांकि , पीडीएल अपनी संरचना और कार्य 19 , 22 ,31,32दोनों में एक समान नहींहै नतीजतन, सार्थक डेटा को पुनः प्राप्त करने के लिए, पीडीएल को 3 डी में अध्ययन करने की आवश्यकता है और किसी भी ऊतक खंड और हेरफेर से यथासंभव बचा जाना चाहिए। फिर भी, दो कठोर ऊतकों के बीच स्थित एक नरम ऊतक की जांच करने से ऐसी आवश्यकताओं को पूरा करना चुनौतीपूर्ण हो जाता है। पीडीएल का अध्ययन करने के पारंपरिक तरीकों में अक्सर 3 डी संरचना से समझौता करना और ऊतक को अपने शारीरिक वातावरण से बाहर निकालना शामिल होता है, जिसके फलस्वरूप पीडीएल संरचनात्मक और बायोमैकेनिकल गुणों में परिवर्तन होता है। संरचनात्मक और जैव यांत्रिक दोनों गुण OTM के दौरान गतिशील परिवर्तन से गुजरते हैं जो ऊतक 3 डी संदर्भ को और भी संरक्षित करने का औचित्य साबित करते हैं। ऐसा करने के लिए हमने दो तरीकों का वर्णन किया जो खंड के बिना पूरे ऊतक इमेजिंग को सक्षम करते हैं, जिसका उपयोग एक ही नमूने सह-स्थानीयकरण फ्लोरोसेंट संकेतों, रूपात्मक और खनिज डेटा पर भी किया जा सकता है।

प्रदान किया गया पद्धतिगत विवरण पाठकों को अध्ययन के अपने क्षेत्रों में तरीकों को लागू करने का निर्देश देता है। माइक्रो-सीटी इमेजिंग पीडीएल रेशेदार नेटवर्क के 3डी विज़ुअलाइज़ेशन की अनुमति देता है। छवियों का विश्लेषण दिशात्मकता और घनत्व विश्लेषण का उत्पादन करने और ओटीएम के दौरान पीडीएल में परिवर्तनों की मात्रात्मक रूप से जांच करने के लिए किया जा सकता है। हमने एक समाशोधन विधि का भी वर्णन किया है जो आसानी से उपलब्ध ऑप्टिकल माइक्रोस्कोपिक विधियों जैसे लाइटशीट माइक्रोस्कोपी और कॉन्फोकल इमेजिंग के साथ दृश्य को सक्षम बनाता है। लाइटशीट माइक्रोस्कोपी अपेक्षाकृत तेजी से इमेजिंग गति के साथ बड़े नमूनों की एक 3 डी छवि के उत्पादन का लाभ है। कॉन्फोकल माइक्रोस्कोपी कोलेजन फाइबर इमेजिंग और फ्लोरोसेंट टैग के लिए एसएचजी सिग्नल का उपयोग करते हुए उच्च रिज़ॉल्यूशन 3डी विज़ुअलाइज़ेशन को सक्षम बनाता है। ये तरीके स्वतंत्र रूप से या संयुक्त रूप से न्यूनतम ऊतक तैयारी के साथ 3 डी संरचनात्मक अध्ययन के लिए कई संभावनाएं खोलते हैं।

इस प्रोटोकॉल में कई चुनौतीपूर्ण कदमों पर अतिरिक्त ध्यान देने की आवश्यकता है:

सबसे पहले, कुंडली प्लेसमेंट के दौरान, लिगेचर तार को पहले और दूसरे मोलर्स के बीच सुरक्षित रूप से रखा जाना चाहिए। माउस दांतों के छोटे आयामों के कारण यह प्रक्रिया चुनौतीपूर्ण है। हम प्लेसमेंट का मार्गदर्शन करने के लिए बेंचटॉप स्टीरियोमाइक्रोस्कोप के उपयोग की सलाह देते हैं। हालांकि, प्रक्रिया के दौरान छोटे आंदोलन माउस को स्थानांतरित कर सकते हैं और रुचि के क्षेत्र को देखने के क्षेत्र से बाहर जाने का कारण बन सकते हैं। एक विकल्प के रूप में, हम 4-5x आवर्धक loupes का उपयोग करने का सुझाव देते हैं जिसे ऑपरेटर पर पहना जा सकता है, जो क्षेत्र को अधिक गतिशील रूप से देखने में मदद कर सकता है।

दूसरे, समाशोधन परिणाम निर्जलीकरण प्रक्रिया पर निर्भर करते हैं । अगर सैंपल वांछित पारदर्शिता स्तर तक नहीं पहुंचा है तो हमारा सुझाव डिहाइड्रेशन टाइम बढ़ाने का है। अधिक विशेष रूप से, अंतिम उत्पाद की पारदर्शिता में सुधार करने के लिए 100% एटोह में लंबे समय तक विसर्जन समय दिखाया गया है। हालांकि, यह ध्यान दिया जाना चाहिए कि निर्जलीकरण का स्तर बढ़ने से फ्लोरेसेंस के स्तर को नाटकीय रूप से24,25में कम किया जा सकता है । प्रस्तुत ईसीआई-आधारित विधि को 2 सप्ताह24से अधिक समय तक फ्लोरोसेंट संकेतों को संरक्षित करने के लिए दिखाया गया था।

इस प्रोटोकॉल के पहलुओं को अन्य उद्देश्यों की एक भीड़ का अध्ययन करने के लिए संशोधित किया जा सकता है। हम माइक्रो सीटी के अंदर डिजाइन कक्ष एक लोड सेल और एक मोटर के साथ युग्मित है और हेमी-मंडीबल नमूनों पर तनाव/संपीड़न परीक्षण करने की क्षमता है । माइक्रो-सीटी के दृश्य के साथ संयुक्त, यह सेट अलग-अलग यांत्रिक भार21के साथ पीडीएल इन-सीटू में परिवर्तन दिखा सकता है। वर्णित समाशोधन विधि को अनसर्गेड नमूनों पर भी लागू किया जा सकता है, जो विभिन्न इमेजिंग तौर-तरीकों के दिलचस्प संयोजन के लिए एक अवसर प्रदान करता है।

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

लेखकों के पास खुलासा करने के लिए कुछ नहीं है ।

Acknowledgments

इस अध्ययन को एनआईएच (एनआईडीसीआर आर00- डीई025053, पीआई:नवेह) द्वारा समर्थित किया गया था। हम बुनियादी ढांचे और समर्थन के लिए जैविक इमेजिंग के लिए हार्वर्ड सेंटर का शुक्रिया अदा करना चाहते हैं । सभी आंकड़े biorender.com के साथ उत्पन्न होते हैं।

Materials

Name Company Catalog Number Comments
1-mL BD Luer-Lok syringe BD 309628
1X phosphate buffered saline VWR Life Sciences 0780-10L
200 proof ethanol VWR Life Sciences V1016
Aluminum alloy 5019 wire Sigma-aldrich GF15828813 0.08 mm diameter wire, length 100th, temper hard. Used as wire ligature around molar.
Avizo 9.7 Thermo Fisher Scientific N/A Used to analyze microCT scans
Castroviejo Micro Needle Holders Fine Science Tools 12060-01
Clr Plan-Apochromat 20x/1.0,CorrVIS-IR M27 85mm Zeiss N/A Used for second harmonic generation imaging
Cone socket handle, single ended, hand-form G.Hartzell and son 126-CSH3 Handle of the inspection mirror
EC Plan-Neofluar 5x/0.16 Zeiss 440321-9902 Used for light-sheet imaging
Elipar DeepCure-S LED curing light 3M ESPE 76985
Eppendorf safe-lock tubes, 1.5mL Eppendorf 22363204
Ethyl cinnamate, >= 98% Sigma-aldrich W243000-1KG-K
Hypodermic Needle, 27G x 1/2'' BD 305109
Ketathesia 100mg/ml Henry Schein Animal Health NDC:11695-0702-1
KIMWIPES delicate task wipers Kimberly-Clark 21905-026 (VWR Catalog number) Purchased from VWR
LightSheet Z.1 dual illumination microscope system Zeiss LightSheet Z.1/LightSheet 7 Used for lightsheet imaging
LSM 880 NLO multi-photon microscope Zeiss LSM 880 NLO Used for two-photon imaging
MEGAmicro, plane, 5mm dia, SS-Thread Hahnenkratt 6220 Front surface inspectrio mirror
MicroCT machine, MicroXCT-200 Xradia MICRO XCT-200
Mini-Colibri Fine Science Tools 17000-01
PermaFlo Flowable Composite Ultradent 948
Procedure platform N/A N/A Custom-made from lab materials
Routine stereo micscope M80 Leica Micosystems M80
Sentalloy NiTi open coil spring TOMY Inc. A 0.15mm diameter closed NiTi coil with an inner coil diameter of 0.9mm delivers a force of 10g. Similar products can be purchased from Dentsply Sirona. 
T-304 stainless steel ligature wire, 0.009'' diameter Orthodontics SBLW109 0.009''(.23mm) diameter, Soft temper
X-Ject E (Xylazine) 100mg/ml Henry Schein Animal Health NDC:11695-7085-1
Z100 Restorative, A2 shade 3M ESPE 5904A2

DOWNLOAD MATERIALS LIST

References

  1. Li, Y., et al. Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences. 34 (4), 207-214 (2018).
  2. Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European Journal of Orthodontics. 28, 221-240 (2006).
  3. Krishnan, V., Davidovitch, Z., molecular, Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics. 129 (4), 1-32 (2006).
  4. Shoji-Matsunaga, A., et al. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Scientific Reports. 7 (1), 8753 (2017).
  5. Oppenheim, A. Tissue changes, particularly of the bone, incident to tooth movement. European Journal of Orthodontics. 29, suppl 1 2-15 (2007).
  6. Unnam, D., et al. Accelerated Orthodontics-An overview. Journal of Archives of Oral Biologyogy and Craniofacial Research. 3 (1), 4 (2018).
  7. von Bohl, M., Kuijpers-Jagtman, A. M. Hyalinization during orthodontic tooth movement : a systematic review on tissue reactions. European Journal of Orthodontics. 31 (1), 30-36 (2009).
  8. Kirschneck, C., et al. Comparative assessment of mouse models for experimental orthodontic tooth movement. Scientific Reports. 10 (1), 1-12 (2020).
  9. Naveh, G. R. S., Weiner, S. Initial orthodontic tooth movement of a multirooted tooth: a 3D study of a rat molar. Orthodontics & Craniofacial Research. 18 (3), 134-142 (2015).
  10. Nakamura, Y., et al. Time-lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. European Journal of Orthodontics. 30 (3), 320-326 (2008).
  11. Kawarizadeh, A., Bourauel, C., Jager, A. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. European Journal of Orthodontics. 25 (6), 569-578 (2003).
  12. Jónsdóttir, S. H., Giesen, E. B. W., Maltha, J. C. Biomechanical behavior of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application. European Journal of Orthodontics. 28, 547 (2006).
  13. Lindhe, J., et al. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clinical Oral Implants Research. 3 (1), 9-16 (1992).
  14. Salamati, A., et al. Functional tooth mobility in young pigs. Journal of Biomechanics. 104, 109716 (2020).
  15. Maria, R., et al. An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: A 3D hierarchical structural study. Journal of Structural Biology. 206 (1), 128-137 (2019).
  16. Wang, S., et al. The miniature pig: a useful large animal model for dental and orofacial research. Oral Diseases. 10, 1-7 (2007).
  17. Melsen, B. Tissue reaction to orthodontic tooth movement--a new paradigm. European Journal of Orthodontics. 23 (6), 671-681 (2001).
  18. Naveh, G. R. S., et al. Direct MicroCT imaging of non-mineralized connective tissues at high resolution. Connective Tissue Research. 55 (1), 52-60 (2014).
  19. Naveh, G. R. S., et al. Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), 9008 (2018).
  20. Naveh, G. R. S., et al. Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. Journal of Structural Biology. 181 (2), 108-115 (2013).
  21. Naveh, G. R. S., et al. Tooth movements are guided by specific contact areas between the tooth root and the jaw bone : A dynamic 3D microCT study of the rat molar. Journal of Structural Biology. 17 (2), 477-483 (2012).
  22. Naveh, G. R. S., et al. Tooth-PDL-bone complex: Response to compressive loads encountered during mastication -A review. Archives of Oral Biology. 57 (12), 1575-1584 (2012).
  23. Ben-Zvi, Y., et al. Response of the tooth-periodontal ligament-bone complex to load: A microCT study of the minipig molar. Journal of Structural Biology. 205 (2), 155-162 (2019).
  24. Klingberg, A., et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology. 28 (2), 452 (2017).
  25. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  26. Taddei, S. R. dA., et al. Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains. Journal of Biomechanics. 45 (16), 2729-2735 (2012).
  27. Nakamura, K., Sahara, N., Deguchi, T. Temporal changes in the distribution and number of macrophage-lineage cells in the periodontal membrane of the rat molar in response to experimental tooth movement. Archives of Oral Biology. 46 (7), 593-607 (2001).
  28. Rygh, P., et al. Activation of the vascular system: A main mediator of periodontal fiber remodeling in orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 89 (6), 453-468 (1986).
  29. Nagao, M., et al. Vascular endothelial growth factor in cartilage development and osteoarthritis. Scientific Reports. 7 (1), 13027 (2017).
  30. Licht, A. H., et al. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Developmental Dynamics. 229 (2), 312-318 (2004).
  31. Connizzo, B. K., Naveh, G. R. S. In situ AFM-based nanoscale rheology reveals regional non-uniformity in viscoporoelastic mechanical behavior of the murine periodontal ligament. Journal of Biomechanics. 111, 109996 (2020).
  32. Connizzo, B. K., et al. Nonuniformity in Periodontal Ligament: Mechanics and Matrix Composition. Journal of Dental Research. 2, 179-186 (2020).

Tags

जीव विज्ञान अंक 170 पीरियोडोन्टल स्नायु डिजिटल इमेजिंग ऊतक समाशोधन तकनीक 3 डी इमेजिंग माइक्रो-सीटी ऑर्थोडोन्टिक टूथ मूवमेंट 3 डी फाइबर दिशा
मंडीबुलर मुरीन मॉडल में ऑर्थोडोन्टिक टूथ मूवमेंट के दौरान पीडीएल कोलेजन फाइबर की 3डी इमेजिंग
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Xu, H., Lee, A., Sun, L., Naveh, G.More

Xu, H., Lee, A., Sun, L., Naveh, G. R. S. 3D Imaging of PDL Collagen Fibers during Orthodontic Tooth Movement in Mandibular Murine Model. J. Vis. Exp. (170), e62149, doi:10.3791/62149 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter