Qui, presentiamo un protocollo di trapianto tumorale per la caratterizzazione di linfociti infiltrati tumorali intrinseci e periferici derivati dal tumore in un modello di tumore murino. Il tracciamento specifico dell’afflusso di cellule immunitarie derivate dal ricevente con citometria a flusso rivela la dinamica dei cambiamenti fenotipici e funzionali di queste cellule durante le risposte immunitarie antitumorali.
L’immunità mediata dalle cellule T svolge un ruolo cruciale nelle risposte immunitarie contro i tumori, con i linfociti T citotossici (CTL) che svolgono un ruolo di primo piano nell’eradicazione delle cellule cancerose. Tuttavia, le origini e il rifornimento delle cellule T CD8+ specifiche dell’antigene tumorale all’interno del microambiente tumorale (TME) rimangono oscuri. Questo protocollo impiega la linea cellulare di melanoma B16F10-OVA, che esprime stabilmente il neoantigene surrogato, l’ovoalbumina (OVA) e i topi transgenici OT-I TCR, in cui oltre il 90% delle cellule T CD8 + riconosce specificamente il peptide OVAOVA 257-264 derivato (SIINFEKL) legato alla molecola del complesso maggiore di istocompatibilità (MHC) di classe I H2-Kb. Queste caratteristiche consentono lo studio delle risposte delle cellule T antigene-specifiche durante la tumorigenesi.
Combinando questo modello con la chirurgia del trapianto di tumore, i tessuti tumorali dei donatori sono stati trapiantati in topi riceventi singenici abbinati al tumore per tracciare con precisione l’afflusso di cellule immunitarie derivate dal ricevente nei tessuti dei donatori trapiantati, consentendo l’analisi delle risposte immunitarie del CD8+ antigene specifico intrinseco al tumore e alla periferia Cellule T. È stata riscontrata una transizione dinamica tra queste due popolazioni. Collettivamente, questo progetto sperimentale ha fornito un altro approccio per studiare con precisione le risposte immunitarie delle cellule T CD8 + nella TME, che getterà nuova luce sull’immunologia tumorale.
La risposta immunitaria mediata dalle cellule T CD8 + svolge un ruolo fondamentale nel controllo della crescita tumorale. Durante la tumorigenesi, le cellule T CD8+ naïve vengono attivate al momento del riconoscimento dell’antigene in modo limitato alla classe I MHC e successivamente si differenziano in cellule effettrici e si infiltrano nella massa tumorale 1,2. Tuttavia, all’interno del microambiente tumorale (TME), l’esposizione prolungata all’antigene, così come i fattori immunosoppressivi, guidano le cellule T CD8+ specifiche del tumore infiltrate in uno stato iporesponsivo noto come “esaurimento”3. Le cellule T esauste (Tex) sono distinte dalle cellule T effettrici o di memoria generate nell’infezione virale acuta, sia trascrizionalmente che epigeneticamente. Queste cellule Tex sono principalmente caratterizzate dall’espressione sostenuta ed elevata di una serie di recettori inibitori e dalla perdita gerarchica delle funzioni effettrici. Inoltre, la ridotta capacità proliferativa delle cellule T CD8+ esauste si traduce in una diminuzione del numero di cellule T specifiche del tumore, in modo tale che le cellule T CD8+ residue all’interno della TME possono a malapena fornire un’immunità protettiva sufficiente contro la progressione tumorale3. Pertanto, il mantenimento o il rinforzo delle cellule T CD8+ specifiche dell’antigene intratumorale è indispensabile per la repressione del tumore.
Inoltre, si ritiene che la terapia di blocco del checkpoint immunitario (ICB) rinvigorisca Tex nei tumori aumentando l’infiltrazione delle cellule T e, quindi, il numero di cellule T e ringiovanendo le funzioni delle cellule T per aumentare la repressione del tumore. L’applicazione diffusa del trattamento con ICB ha cambiato il panorama della terapia del cancro, con un sottogruppo sostanziale di pazienti che hanno sperimentato risposte durature 4,5,6. Tuttavia, la maggior parte dei pazienti e dei tipi di cancro non risponde o risponde solo temporaneamente al CNB. L’inadeguata infiltrazione di cellule T nella TME è stata postulata come uno dei meccanismi sottostanti alla resistenza del CNB 7,8.
Diversi studi hanno dimostrato l’eterogeneità delle cellule T CD8+ infiltranti il tumore (TIL) sia nei pazienti che nei modelli murini 9,10,11,12. È stato confermato che un sottogruppo di cellule T CD8+ che esprimono il fattore 1 delle cellule T (TCF1) in una massa tumorale presenta proprietà simili a quelle delle cellule staminali, che potrebbero ulteriormente dare origine a cellule T esaurite terminalmente ed è responsabile dello scoppio della proliferazione dopo la terapia con ICB 12,13,14,15,16,17,18,19,20, 21,22. Tuttavia, è stato dimostrato che solo una piccola percentuale di cellule TCF1+CD8+ antigene-specifiche esiste nella TME e genera un pool ampliato di progenie differenziata in risposta all’ICB 23,24,25,26. Se la dimensione limitata di questa popolazione sia sufficiente a garantire la persistenza dei linfociti T citotossici (CTL) per controllare la progressione del tumore rimane sconosciuto e se vi sia un rifornimento dai tessuti periferici richiede ulteriori indagini. Inoltre, recenti ricerche suggeriscono l’insufficiente capacità di rinvigorimento delle cellule T tumorali specifiche preesistenti e la comparsa di nuovi clonotipi precedentemente inesistenti dopo il trattamento con proteina 1 di morte cellulare anti-programmata. Ciò indica che la risposta delle cellule T al blocco del checkpoint potrebbe essere dovuta al nuovo afflusso di un repertorio distinto di cloni di cellule T27. Insieme alla presenza di frazioni di cellule T citotossiche non reattive al tumore nella TME, questi risultati hanno spinto la creazione di un modello di allotrapianto tumorale per studiare il ruolo delle cellule T CD8+ 11 derivate dalla periferia.
Fino ad ora, diversi tipi di impianto tumorale, così come il trasferimento adottivo delle cellule immunitarie, sono stati ampiamente utilizzati nel campo dell’immunologia tumorale28. I TIL, le cellule mononucleate del sangue periferico e le cellule immunitarie reattive al tumore originate da altri tessuti possono essere ben caratterizzate utilizzando questi metodi. Tuttavia, quando si studiano le interazioni tra immunità antitumorale sistemica e locale, questi modelli appaiono inadeguati per esaminare le interazioni tra le cellule immunitarie derivate dalla periferia e la TME. Qui, i tessuti tumorali sono stati trapiantati da donatori in topi riceventi abbinati al tumore per tracciare con precisione l’afflusso di cellule immunitarie derivate dal ricevente e osservare contemporaneamente le cellule derivate dal donatore nella TME.
In questo studio, è stato stabilito un modello singenico murino di melanoma con la linea cellulare di melanoma B16F10-OVA, che esprime stabilmente l’ovalbumina neoantigena surrogata. I topi ot-I transgenici TCR, in cui oltre il 90% delle cellule T CD8+ riconoscono specificamente il peptide OVAOVA 257-264 (SIINFEKL) legato alla molecola MHC di classe I H2-Kb, consentono lo studio delle risposte delle cellule T antigene-specifiche sviluppate nel modello tumorale B16F10-OVA. Combinando questo modello con il trapianto di tumore, le risposte immunitarie delle cellule T CD8+ antigene-specifiche intrinseche e periferiche intrinseche del tumore sono state confrontate per rivelare una transizione dinamica tra queste due popolazioni. Collettivamente, questo progetto sperimentale ha fornito un altro approccio per studiare con precisione le risposte immunitarie delle cellule T CD8 + nella TME, che getta nuova luce sulla dinamica delle risposte immunitarie delle cellule T specifiche del tumore nella TME.
L’immunità mediata dalle cellule T svolge un ruolo cruciale nelle risposte immunitarie contro i tumori, con le CTL che svolgono il ruolo principale nell’eradicazione delle cellule cancerose. Tuttavia, le origini delle CTL antigene tumorale specifiche all’interno della TME non sono state chiarite30. L’uso di questo protocollo di trapianto tumorale ha fornito un indizio importante sul fatto che le cellule T CD8+ specifiche dell’antigene intratumorale potrebbero non persistere a lungo, no…
The authors have nothing to disclose.
Questo studio è stato supportato da sovvenzioni del National Natural Science Fund for Distinguished Young Scholars (n. 31825011 a LY) e della National Natural Science Foundation of China (n. 31900643 a QH, n. 31900656 a ZW).
0.22 μm filter | Millipore | SLGPR33RB | |
1 mL tuberculin syringe | KDL | BB000925 | |
1.5 mL centrifuge tube | KIRGEN | KG2211 | |
100 U insulin syringe | BD Biosciences | 320310 | |
15 mL conical tube | BEAVER | 43008 | |
2,2,2-Tribromoethanol (Avertin) | Sigma | T48402-25G | |
2-Methyl-2-butanol | Sigma | 240486-100ML | |
70 μm nylon cell strainer | BD Falcon | 352350 | |
APC anti-mouse CD45.1 | BioLegend | 110714 | Clone:A20 |
B16F10-OVA cell line | bluefbio | BFN607200447 | |
BSA-V (bovine serum albumin) | Bioss | bs-0292P | |
BV421 Mouse Anti-Mouse CD45.2 | BD Horizon | 562895 | Clone:104 |
cell culture dish | BEAVER | 43701/43702/43703 | |
centrifuge | Eppendorf | 5810R-A462/5424R | |
cyclophosphamide | Sigma | C0768-25G | |
Dulbecco's Modified Eagle Medium | Gibco | C11995500BT | |
EasySep Mouse CD8+ T Cell Isolation Kit | Stemcell Technologies | 19853 | |
EDTA | Sigma | EDS-500g | |
FACS tubes | BD Falcon | 352052 | |
fetal bovine serum | Gibco | 10270-106 | |
flow cytometer | BD | FACSCanto II | |
hemocytometer | PorLab Scientific | HM330 | |
isoflurane | RWD life science | R510-22-16 | |
KHCO3 | Sangon Biotech | A501195-0500 | |
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation | Life Technologies | L10199 | |
needle carrier | RWD Life Science | F31034-14 | |
NH4Cl | Sangon Biotech | A501569-0500 | |
paraformaldehyde | Beyotime | P0099-500ml | |
PE anti-mouse TCR Vα2 | BioLegend | 127808 | Clone:B20.1 |
Pen Strep Glutamine (100x) | Gibco | 10378-016 | |
PerCP/Cy5.5 anti-mouse CD8a | BioLegend | 100734 | Clone:53-6.7 |
RPMI-1640 | Sigma | R8758-500ML | |
sodium azide | Sigma | S2002 | |
surgical forceps | RWD Life Science | F12005-10 | |
surgical scissors | RWD Life Science | S12003-09 | |
suture thread | RWD Life Science | F34004-30 | |
trypsin-EDTA | Sigma | T4049-100ml |