Summary

Гиперактивный piggyBac Транспозазно-опосредованная трансформация зародышевой линии у травяной совки, Spodoptera frugiperda

Published: September 23, 2021
doi:

Summary

Успешная трансформация зародышевой линии у травяной совки, Spodoptera frugiperda,была достигнута с помощью мРНК гиперактивной транспоза piggyBac.

Abstract

Стабильная вставка генетического груза в геномы насекомых с использованием транспонируемых элементов является мощным инструментом для функциональных геномных исследований и разработки стратегий борьбы с генетическими вредителями. Наиболее используемым транспонируемым элементом в трансформации насекомых является piggyBac,а трансформация зародышевой линии на основе piggyBacбыла успешно проведена у модельных насекомых. Тем не менее, по-прежнему сложно использовать эту технологию у немодельных насекомых, которые включают сельскохозяйственных вредителей. В этой статье сообщается о трансформации зародышевой линии глобального сельскохозяйственного вредителя, травяной совки (FAW), Spodoptera frugiperda,с использованием гиперактивной транспоза piggyBac (hyPBase).

В этой работе мРНК hyPBase была получена и использована вместо плазмиды-хелпера в микроинъекциях эмбриона. Это изменение привело к успешному поколению трансгенных FAW. Кроме того, описаны методы скрининга трансгенных животных, быстрого обнаружения трансгенной вставки трансгена на основе ПЦР и определения сайта интеграции на основе термической асимметричной чересстрочной ПЦР (TAIL-PCR). Таким образом, в данной работе представлен протокол получения трансгенного FAW, который облегчит трансгенез на основе piggyBacу FAW и других чешуекрылых насекомых.

Introduction

Травяная совка (FAW), Spodoptera frugiperda,является родной для тропических и субтропических регионов Америки. В настоящее время это разрушительное насекомое травоядное животное в более чем 100 странах мира1. Личинки FAW питаются более чем 350 растениями-хозяевами, включая некоторые важные основные продовольственные культуры2. Сильная миграционная способность взрослых особей FAW способствует его недавнему быстрому распространению из Северной и Южной Америки в другие места1,2. В результате это насекомое в настоящее время угрожает продовольственной безопасности на международном уровне. Применение новых технологий может способствовать проведению углубленных исследований в FAW и обеспечить новые стратегии борьбы с этим вредителем.

Трансформация зародышевой линии насекомых была использована для изучения функции генов и генерации трансгенных насекомых для использования в генетическом контроле3,4. Среди различных методов, используемых для достижения генетической трансформации у насекомых, метод на основе элементов piggyBac является наиболее используемым методом5. Однако из-за низкой скорости транспозиции по-прежнему сложно проводить трансгенез у немодельных насекомых. Недавно была разработана гиперактивная версия транспозазы piggyBac (hyPBase)6,7. Трансформация зародышевой линии была достигнута в FAW недавно8,что является первым отчетом, в котором используется hyPBase у чешуекрылых насекомых. В этом отчете описана подробная информация об использовании мРНК hyPBase для генерации трансгенного FAW. Метод, описанный здесь, может быть применен для достижения трансформации других чешуекрылых насекомых.

Protocol

1. In vitro синтез мРНК hyPBase ПРИМЕЧАНИЕ: Полная кодирующая последовательность последовательности hyPBase была синтезирована и вставлена в вектор pTD1-Cas9 (см. Таблицу материалов)для получения конструкции pTD1-hyPBase, которая содержит экспрессирующую hyPBase кассету, промотор …

Representative Results

Конструкция для экспрессии hyPBase-содержащего промотора T7: многогранника-5’UTR: hyPBase: polyhedrin-3’UTR: поли(A) сигнал генерировали(рисунок 1A)и усиливали в виде ~2,2 кб ПЦР-фрагмента для синтеза мРНК hyPBase in vitro (рисунок 1B). Затем мРНК hyPBase продуцировали и подвергали эл?…

Discussion

Низкая скорость транспозиции и сложность доставки трансгенных компонентов в свежие эмбрионы ограничивают успех трансформации зародышевой линии у многих немодельных насекомых, особенно у чешуекрылых. Для увеличения скорости трансформации зародышевой линии была разработана гиперак?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Исследование, о котором сообщается, поддерживается Национальным научным фондом I / UCRC, Центром технологий управления членистоногими в рамках гранта No IIP-1821936 и отраслевыми партнерами, конкурентным грантом Инициативы по исследованиям в области сельского хозяйства и продовольствия No 2019-67013-29351 и Национальным институтом продовольствия и сельского хозяйства Министерства сельского хозяйства США (2019-67013-29351 и 2353057000).

Materials

1.5" Dental Cotton Rolls PlastCare USA 8542025591 REARING
1 oz Souffle Cup Lids DART PL1N
1 oz Souffle Cups DART P100N REARING
48 oz Plastic Deli Containers Genpack AD48 REARING
Add-on Filter Set (Green) NightSea LLC SFA-BLFS-GR SCREENING
Borosilicate Glass Sutter Instruments BF100-50-10 INJECTION
Borosilicate Glass SUTTER INSTRUMENT BF-100-50-10
Dissecting Scope Nikon SMZ745T SCREENING
Featherweight Forceps BioQuip 4750 REARING
Gutter Guard ThermWell Products VX620 REARING
Inverted Microscope Olympus IX71 INJECTION
Microinjector Narishige IM-300 INJECTION
Micropipette Puller Sutter Instruments P-1000 INJECTION
Microscope Slides VWR 16004-22 INJECTION
NightSea Full System NightSea LLC SFA-RB-DIM SCREENING
Nitrogen Gas AWG/Scott-Gross NI 225 INJECTION
Paper Towels Bounty  43217-45074 REARING
Spodoptera frugiperda Artificial Diet Southland Products, Inc N/A [Request Species/Quantity] REARING
Spodoptera frugiperda Eggs Benzon Research, Inc N/A [Request Species/Quantity] REARING
Taq MasterMix polymerase mixture

References

  1. Gui, F., et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell. , (2020).
  2. Montezano, D. G., et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology. 26 (2), 286-300 (2018).
  3. Li, Z., et al. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proceedings, Biological Sciences. 282 (1809), 20150513 (2015).
  4. Ogaugwu, C. E., Schetelig, M. F., Wimmer, E. A. Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality. Insect Biochemistry and Molecular Biology. 43 (1), 1-8 (2013).
  5. Gregory, M., Alphey, L., Morrison, N. I., Shimeld, S. M. Insect transformation with piggyBac: getting the number of injections just right. Insect Molecular Biology. 25 (3), 259-271 (2016).
  6. Otte, M., et al. Improving genetic transformation rates in honeybees. Scientific Reports. 8 (1), 16534 (2018).
  7. Eckermann, K. N., et al. Hyperactive piggyBac transposase improves transformation efficiency in diverse insect species. Insect Biochemistry and Molecular Biology. 98, 16-24 (2018).
  8. Chen, X., Koo, J., Gurusamy, D., Mogilicherla, K., Palli, S. R. Caenorhabditis elegans systemic RNA interference defective protein 1 enhances RNAi efficiency in a lepidopteran insect, the fall armyworm, in a tissue-specific manner. RNA Biology. , 1-9 (2020).
  9. Liu, Y. G., Chen, Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 43 (5), 649-650 (2007).
  10. Yusa, K., Zhou, L., Li, M. A., Bradley, A., Craig, N. L. A hyperactive piggyBac transposase for mammalian applications. Proceedings of the National Academy of Sciences of the Unites States of America. 108 (4), 1531-1536 (2011).
  11. Xu, H., O’Brochta, D. A. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proceedings, Biological Sciences. 282 (1810), 20150487 (2015).
  12. Wu, S. C. -. Y., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the Unites States of America. 103 (41), 15008-15013 (2006).
  13. Tamura, T., et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology. 18 (1), 81-84 (2000).
  14. Handler, A. M., Harrell, R. A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Molecular Biology. 8 (4), 449-457 (1999).
  15. Dreyfus, M., Régnier, P. The poly (A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell. 111 (5), 611-613 (2002).

Play Video

Cite This Article
Chen, X., Palli, S. R. Hyperactive piggyBac Transposase-mediated Germline Transformation in the Fall Armyworm, Spodoptera frugiperda. J. Vis. Exp. (175), e62714, doi:10.3791/62714 (2021).

View Video