Summary

Mätning av kontralateral tyst period inducerad av transkraniell magnetstimulering med en puls för att undersöka M1-kortikospinalhämning

Published: August 23, 2022
doi:

Summary

Kontralateral tyst period (cSP) bedömning är en lovande biomarkör för att indexera kortikal excitabilitet och behandlingssvar. Vi demonstrerar ett protokoll för att bedöma cSP avsedd för att studera M1 kortikospinal hämning av övre och nedre extremiteter.

Abstract

Kontralateral tyst period (cSP) är en period av undertryckande i bakgrunden elektrisk muskelaktivitet fångad av elektromyografi (EMG) efter en motor framkallad potential (MEP). För att erhålla detta framkallas en MEP av en supratröskel transkraniell magnetisk stimulering (TMS) puls som levereras till den primära motorcortexen (M1) i den valda målmuskeln, medan deltagaren tillhandahåller en standardiserad frivillig målmuskelkontraktion. CSP är ett resultat av hämmande mekanismer som uppstår efter MEP; Det ger en bred tidsmässig bedömning av spinal hämning i dess initiala ~ 50 ms, och kortikal hämning efter. Forskare har försökt att bättre förstå den neurobiologiska mekanismen bakom cSP för att validera den som en potentiell diagnostisk, surrogat och prediktiv biomarkör för olika neuropsykiatriska sjukdomar. Därför beskriver denna artikel en metod för att mäta M1 cSP i nedre och övre extremiteter, inklusive ett urval av målmuskel, elektrodplacering, spolpositionering, metod för att mäta frivillig kontraktionsstimulering, intensitetsinställning och dataanalys för att erhålla ett representativt resultat. Det har det pedagogiska målet att ge en visuell riktlinje för att utföra ett genomförbart, pålitligt och reproducerbart cSP-protokoll för nedre och övre extremiteter och diskutera praktiska utmaningar för denna teknik.

Introduction

Den tysta perioden (SP) är en period av elektromyografisk (EMG) tystnad som följer en motorframkallad potential (MEP) inducerad av transkraniell magnetisk stimulering (TMS) applicerad under långvarig muskelkontraktion. Den supratröskel TMS-pulsen kan antingen appliceras på den kontralaterala eller ipsilaterala primära motorcortexen (M1) i målmuskeln från vilken EMG-aktiviteten registreras, vilket ger två fenomen: kontralateral tyst period (cSP) och ipsilateral tyst period (iSP).

Även om iSP och cSP delar liknande funktioner kan de återspegla något olika komponenter. Den första tros återspegla transcallosal hämning och därmed vara helt av kortikalt ursprung 1,2. Omvänt undersöks cSP som ett möjligt surrogat för kortikospinal hämning, troligen medierad av gamma-aminosmörsyra (GABA) B-receptorer inom M1 3,4,5.

Stöd för cSP: s roll i GABA-medierade vägar har tidigare arbeten funnit en ökning av cSP-varaktigheten efter oral administrering av GABA-förbättrande komponenter 5,6,7,8. Ändå är ryggradsprocesser också involverade i att ändra dess varaktighet. Den tidigare fasen (<50 ms) av cSP är associerad med minskade H-reflexvärden3-en reflex som är en produkt av perifera neurokretsar och som kvantifierar retbarheten hos ryggradsneuroner9. Spinal bearbetning tros förmedlas genom aktivering av Renshaw-celler, motoneuron efter hyperpolarisering och postsynaptisk hämning av spinal interneuroner 10,11,12,13,14.

Trots spinal bidrag är cSP huvudsakligen resultatet av aktiveringen av kortikala hämmande neuroner, som är ansvariga för att generera den senare delen av cSP (50-200 ms)3,10,13,15,16. I det avseendet har den tidiga delen av cSP-varaktigheten associerats med spinalhämningsmekanismer, medan långa cSPs kräver större kortikala hämmande mekanismer 3,13,17,18.

Därför är cSP en lovande biomarkörkandidat för kortikospinal missanpassning på grund av neurologiska störningar, medan mer signifikanta cSP-varaktigheter potentiellt återspeglar en ökning av kortikospinalhämning och vice versa 5,11. Följaktligen har tidigare arbeten funnit en koppling mellan cSP-varaktighet och patologier som dystoni, Parkinsons sjukdom, kronisk smärta, stroke och andra neurodegenerativa och psykiatriska tillstånd 19,20,21,22. För att illustrera, i en knä artros kohort, var en högre intrakortikal hämning (som indexerad av cSP) associerad med yngre ålder, större broskdegeneration och mindre kognitiv prestanda i Montreal kognitiv bedömningsskala23. Dessutom kan cSP-förändringar också longitudinellt indexera behandlingssvar och motorisk återhämtning 24,25,26,27,28,29,30.

Så lovande som rollen av cSP inom neuropsykiatriområdet är, är en utmanande aspekt av dess bedömning att den kan vara för känslig för protokollvariationer. Till exempel kan cSP-varaktigheten (~ 100-300 ms)11 skilja mellan övre och nedre extremiteter. fann en genomsnittlig cSP-varaktighet på 121,2 ms (± 32,5) för den första dorsala interosseösa muskeln (FDI) och 75,5 ms (± 21) för tibialis främre muskel (TA), i ett urval av fibromyalgipatienter31. Således förmedlar litteraturen en myriad av skillnader i de parametrar som används för att framkalla cSPs, vilket i sin tur äventyrar jämförbarheten mellan studier och försenar översättningen till klinisk praxis. Inom en liknande population har protokollen varit heterogena avseende supratröskel TMS-pulsinställningen som används för att stimulera M1 och målmuskeln, till exempel. Dessutom har forskare misslyckats med att korrekt rapportera parametrarna som används i deras protokoll.

Därför är målet att tillhandahålla en visuell riktlinje för hur man tillämpar ett genomförbart, tillförlitligt och lätt reproducerbart cSP-protokoll för utvärdering av M1 kortikospinal excitabilitet hos övre och nedre extremiteter och att diskutera de praktiska metodologiska utmaningarna för det förfarandet. För att illustrera resonemanget för valet av parametrar genomförde vi också en icke-uttömmande litteraturöversikt på Pubmed / MEDLINE för att identifiera publicerade artiklar om cSP i kronisk smärta och rehabiliteringspopulationer med hjälp av söktermen: Rehabilitering (Mesh) eller rehabilitering eller kronisk smärta eller stroke och termer som transkraniell magnetisk stimulering och enstaka puls eller kortikal tyst period. Inga inklusionskriterier definierades för extraktionen och poolade resultat visas i tabell 1 endast i illustrativt syfte.

Protocol

Detta protokoll omfattar forskning på människor och ligger i linje med institutionella och etiska riktlinjer från lokala etiska kommittéer och Helsingforsdeklarationen. Informerat samtycke erhölls från försökspersoner för att använda sina data i studien. 1. Förexperimentella förfaranden Screening av ämnet. Screena ämnet för intrakraniella implantat, epilepsi, historia av anfall och graviditet. Använd riktlinjer för frågeformulär för att säkerstä…

Representative Results

Efter att ha följt steg-för-steg-proceduren kommer leveransen av en supratröskel TMS-puls (120% av RMT) att framkalla en observerbar MEP i EMG-inspelningen av målmuskeln och en efterföljande period av bakgrunds-EMG-aktivitetsundertryckning på cirka 150 ms till 300 ms (figur 2). Från det EMG-mönstret är det möjligt att beräkna cSP-måtten. De mest rapporterade resultaten är varaktigheten (i intervallet ms) för den relativa och absoluta SP. Den relativa SP mäts från MEP-start ti…

Discussion

Standard-SI för att framkalla MEP och SPs kan variera beroende på populationen. Intensiteter så låga som 80% RMT har visat sig framkalla cSP hos friska individer39, fortfarande studier på både friska och sjuka populationer har använt intensiteter så höga som 150% RMT 49,50,51. Även om denna källa till heterogenitet kan vara inneboende i målgruppens natur, bör den inte försummas eftersom olik…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Inga bekräftelser.

Materials

Alcohol pads Medline Preparation with 70% isopropyl alcohol
Conductive gel Weaver and Company Used on the electrode
Echo Pinch JTECH medical 0902A302 Digital dynamometer.
Mega-EMG Soterix Medical NS006201 Digital multiple channel EMG with built in software.
MEGA-TMS coil Soterix Medical NS063201 8 shaped TMS coil
Mega-TMS stimulator Soterix Medical 6990061 Single Pulse TMS
Neuro-MEP.NET Soterix Medical EMG software used to analyse the muscles eletrical activity.
Swim cap Kiefer

References

  1. Li, J. Y., Lai, P. H., Chen, R. Transcallosal inhibition in patients with callosal infarction. Journal of Neurophysiology. 109 (3), 659-665 (2013).
  2. Wassermann, E. M., Fuhr, P., Cohen, L. G., Hallett, M. Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology. 41 (11), 1795-1799 (1991).
  3. Fuhr, P., Agostino, R., Hallett, M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalography and Clinical Neurophysiology. 81 (4), 257-262 (1991).
  4. Meyer, B. U., Röricht, S., Gräfin von Einsiedel, H., Kruggel, F., Weindl, A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 118, 429-440 (1995).
  5. Hupfeld, K. E., Swanson, C. W., Fling, B. W., Seidler, R. D. TMS-induced silent periods: A review of methods and call for consistency). Journal of Neuroscience Methods. 346, 108950 (2020).
  6. Siebner, H. R., Dressnandt, J., Auer, C., Conrad, B. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve. 21 (9), 1209-1212 (1998).
  7. Vallence, A. M., Smalley, E., Drummond, P. D., Hammond, G. R. Long-interval intracortical inhibition is asymmetric in young but not older adults. Journal of Neurophysiology. 118 (3), 1581-1590 (2017).
  8. Manconi, F. M., Syed, N. A., Floeter, M. K. Mechanisms underlying spinal motor neuron excitability during the cutaneous silent period in humans. Muscle Nerve. 21 (10), 1256-1264 (1998).
  9. Romanò, C., Schieppati, M. Reflex excitability of human soleus motoneurones during voluntary shortening or lengthening contractions. The Journal of Physiology. 390, 271-284 (1987).
  10. Cantello, R., Gianelli, M., Civardi, C., Mutani, R. Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology. 42 (10), 1951-1959 (1992).
  11. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 126 (6), 1071-1107 (2015).
  12. Classen, J., Benecke, R. Inhibitory phenomena in individual motor units induced by transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology. 97 (5), 264-274 (1995).
  13. Inghilleri, M., Berardelli, A., Cruccu, G., Manfredi, M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. The Journal of Physiology. 466, 521-534 (1993).
  14. Roick, H., von Giesen, H. J., Benecke, R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Experimental Brain Research. 94 (3), 489-498 (1993).
  15. Chen, R., Lozano, A. M., Ashby, P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Experimental Brain Research. 128 (4), 539-542 (1999).
  16. Schnitzler, A., Benecke, R. The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neuroscience Letters. 180 (1), 41-45 (1994).
  17. Cantello, R., Tarletti, R., Civardi, C. Transcranial magnetic stimulation and Parkinson’s disease. Brain Research. Brain Research Reviews. 38 (3), 309-327 (2002).
  18. Ziemann, U., Netz, J., Szelényi, A., Hömberg, V. Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neuroscience Letters. 156 (1-2), 167-171 (1993).
  19. Paci, M., Di Cosmo, G., Perrucci, M. G., Ferri, F., Costantini, M. Cortical silent period reflects individual differences in action stopping performance. Scientific Reports. 11 (1), 15158 (2021).
  20. Poston, B., Kukke, S. N., Paine, R. W., Francis, S., Hallett, M. Cortical silent period duration and its implications for surround inhibition of a hand muscle. The European Journal of Neuroscience. 36 (7), 2964-2971 (2012).
  21. Vidor, L. P., et al. Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome. BMC Neuroscience. 15, 42 (2014).
  22. Bradnam, L., et al. Afferent inhibition and cortical silent periods in shoulder primary motor cortex and effect of a suprascapular nerve block in people experiencing chronic shoulder pain. Clinical Neurophysiology. 127 (1), 769-778 (2016).
  23. Simis, M., et al. Increased motor cortex inhibition as a marker of compensation to chronic pain in knee osteoarthritis. Scientific Reports. 11 (1), 24011 (2021).
  24. List, J., et al. Cortical reorganization due to impaired cerebral autoregulation in individuals with occlusive processes of the internal carotid artery. Brain Stimulation. 7 (3), 381-387 (2014).
  25. Gray, W. A., Palmer, J. A., Wolf, S. L., Borich, M. R. Abnormal EEG responses to TMS during the cortical silent period are associated with hand function in chronic stroke. Neurorehabilitation and Neural Repair. 31 (7), 666-676 (2017).
  26. Braune, H. J., Fritz, C. Transcranial magnetic stimulation-evoked inhibition of voluntary muscle activity (silent period) is impaired in patients with ischemic hemispheric lesion. Stroke. 26 (4), 550-553 (1995).
  27. Goodwill, A. M., Teo, W. -. P., Morgan, P., Daly, R. M., Kidgell, D. J. Bihemispheric-tDCS and upper limb rehabilitation improves retention of motor function in chronic stroke: A pilot study. Frontiers in Human Neuroscience. 10, 258 (2016).
  28. Cincotta, M., et al. Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy. Clinical Neurophysiology. 114 (10), 1827-1833 (2003).
  29. Langguth, B., et al. Transcranial magnetic stimulation for the treatment of tinnitus: effects on cortical excitability. BMC Neuroscience. 8, 45 (2007).
  30. Priori, A., et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Experimental Neurology. 189 (2), 369-379 (2004).
  31. Salerno, A., et al. Motor cortical dysfunction disclosed by single and double magnetic stimulation in patients with fibromyalgia. Clinical Neurophysiology. 111 (6), 994-1001 (2000).
  32. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Screening questionnaire before TMS: an update. Clinical Neurophysiology. 122 (8), 1686 (2011).
  33. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Safety of, T.M.S.C.G. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology. 120 (12), 2008-2039 (2009).
  34. Rossi, S., et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology. 132 (1), 269-306 (2021).
  35. Hermens, H. J., Freriks, B., Disselhorst-Klug, C., Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology. 10 (5), 361-374 (2000).
  36. Groppa, S., et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology. 123 (5), 858-882 (2012).
  37. Daskalakis, Z. J., et al. An automated method to determine the transcranial magnetic stimulation-induced contralateral silent period. Clinical Neurophysiology. 114 (5), 938-944 (2003).
  38. Orth, M., Rothwell, J. C. The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clinical Neurophysiology. 115 (5), 1076-1082 (2004).
  39. Säisänen, L., et al. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction. Journal of Neuroscience Methods. 169 (1), 231-238 (2008).
  40. Kojima, S., et al. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. BMC Neuroscience. 14 (1), 43 (2013).
  41. Poston, B., Kukke, S. N., Paine, R. W., Francis, S., Hallett, M. Cortical silent period duration and its implications for surround inhibition of a hand muscle. The European Journal of Neuroscience. 36 (7), 2964-2971 (2012).
  42. Kimiskidis, V. K., et al. Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers. Experimental Brain Research. 163 (1), 21-31 (2005).
  43. Chipchase, L., et al. A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: an international consensus study. Clinical Neurophysiology. 123 (9), 1698-1704 (2012).
  44. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 126 (6), 1071-1107 (2015).
  45. Zeugin, D., Ionta, S. Anatomo-Functional origins of the cortical silent period: Spotlight on the basal ganglia. Brain Sciences. 11 (6), 705 (2021).
  46. Person, R. S., Kozhina, G. V. Investigation of the silent period by a poststimulus histogram method. Neurophysiology. 10 (2), 123-129 (1978).
  47. Stinear, C. M., Coxon, J. P., Byblow, W. D. Primary motor cortex and movement prevention: where Stop meets Go. Neuroscience and Biobehavioral Reviews. 33 (5), 662-673 (2009).
  48. Mathis, J., de Quervain, D., Hess, C. W. Dependence of the transcranially induced silent period on the ‘instruction set’ and the individual reaction time. Electroencephalography and Clinical Neurophysiology. 109 (5), 426-435 (1998).
  49. Chandra, S. R., Issac, T. G., Nagaraju, B. C., Philip, M. A study of cortical excitability, central motor conduction, and cortical inhibition using single pulse transcranial magnetic stimulation in patients with early frontotemporal and Alzheimer’s Dementia. Indian Journal of Psychological Medicine. 38 (1), 25-30 (2016).
  50. Bocci, T., et al. Spinal direct current stimulation modulates short intracortical inhibition. Neuromodulation. 18 (8), 686-693 (2015).
  51. Zunhammer, M., et al. Modulation of human motor cortex excitability by valproate. Psychopharmacology (Berl). 215 (2), 277-280 (2011).
  52. Ho, K. H., Nithi, K., Mills, K. R. Covariation between human intrinsic hand muscles of the silent periods and compound muscle action potentials evoked by magnetic brain stimulation: evidence for common inhibitory connections. Experimental Brain Research. 122 (4), 433-440 (1998).
  53. Acler, M., Fiaschi, A., Manganotti, P. Long-term levodopa administration in chronic stroke patients. A clinical and neurophysiologic single-blind placebo-controlled cross-over pilot study. Restorative Neurology and Neuroscience. 27 (4), 277-283 (2009).
  54. Volz, M. S., et al. Dissociation of motor task-induced cortical excitability and pain perception changes in healthy volunteers. PLoS One. 7 (3), 34273 (2012).
  55. Veldema, J., Nowak, D. A., Gharabaghi, A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. Journal of Neuroengineering and Rehabilitation. 18 (1), 158 (2021).
  56. Rossi, S., et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology. 132 (1), 269-306 (2021).
  57. Ortu, E., et al. Primary motor cortex hyperexcitability in Fabry’s disease. Clinical Neurophysiology. 124 (7), 1381-1389 (2013).
  58. Goodwill, A. M., Teo, W. P., Morgan, P., Daly, R. M., Kidgell, D. J. Bihemispheric-tDCS and upper limb rehabilitation improves retention of motor function in chronic stroke: A pilot study. Frontiers in Human Neuroscience. 10, 258 (2016).
  59. Mayorga, T., et al. Motor-Evoked potentials of the abductor hallucis muscle and their relationship with foot arch functional anatomy. Journal of American Podiatric Medical Association. 107 (5), 467-470 (2017).
  60. Matsugi, A., et al. Cerebellar transcranial magnetic stimulation reduces the silent period on hand muscle electromyography during force control. Brain Science. 10 (2), 63 (2020).
  61. van Kuijk, A. A., Pasman, J. W., Geurts, A. C., Hendricks, H. T. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. Journal of Clinical Neurophysiology. 22 (1), 10-24 (2005).
  62. Wu, L., Goto, Y., Taniwaki, T., Kinukawa, N., Tobimatsu, S. Different patterns of excitation and inhibition of the small hand and forearm muscles from magnetic brain stimulation in humans. Clinical Neurophysiology. 113 (8), 1286-1294 (2002).
  63. Hunter, S. K., Todd, G., Butler, J. E., Gandevia, S. C., Taylor, J. L. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. Journal of Applied Physiology. 105 (4), 1199-1209 (2008).
  64. Yoon, T., Schlinder-Delap, B., Keller, M. L., Hunter, S. K. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults. Journal of Applied Physiology. 112 (5), 849-858 (2012).
  65. Kennedy, D. S., McNeil, C. J., Gandevia, S. C., Taylor, J. L. Effects of fatigue on corticospinal excitability of the human knee extensors. Experimental Physiology. 101 (12), 1552-1564 (2016).
  66. Goodall, S., Howatson, G., Thomas, K. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males. Experimental Brain Research. 236 (2), 463-473 (2018).
  67. Neva, J. L., et al. Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behavioural Brain Research. 297, 187-195 (2016).
  68. Caumo, W., et al. Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology. Frontiers in Human Neuroscience. 10, 357 (2016).
  69. Chen, M., Deng, H., Schmidt, R. L., Kimberley, T. J. Low-Frequency repetitive transcranial magnetic stimulation targeted to premotor cortex followed by primary motor cortex modulates excitability differently than premotor cortex or primary motor cortex stimulation alone. Neuromodulation. 18 (8), 678-685 (2015).
  70. van Kuijk, A. A., et al. Definition dependent properties of the cortical silent period in upper-extremity muscles, a methodological study. Journal of Neuroengineering and Rehabilitation. 11, 1 (2014).
  71. van Kuijk, A. A., et al. Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles. Journal of Electromyography and Kinesiology. 19 (4), 574-583 (2009).
  72. Vernillo, G., Temesi, J., Martin, M., Millet, G. Y. Mechanisms of fatigue and recovery in upper versus lower limbs in men. Medicine and Science in Sports and Exercise. 50 (2), 334-343 (2018).
  73. Chen, M., et al. Evaluation of the cortical silent period of the laryngeal motor cortex in healthy individuals. Frontiers in Neuroscience. 11, 88 (2017).
  74. Masakado, Y., Akaboshi, K., Nagata, M., Kimura, A., Chino, N. Motor unit firing behavior in slow and fast contractions of the first dorsal interosseous muscle of healthy men. Electroencephalography and Clinical Neurophysiology. 97 (6), 290-295 (1995).
  75. Petersen, N. T., Pyndt, H. S., Nielsen, J. B. Investigating human motor control by transcranial magnetic stimulation. Experimental Brain Research. 152 (1), 1-16 (2003).
  76. Dharmadasa, T., et al. The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS. Neuroscience Letters. 699, 84-90 (2019).
  77. Kesar, T. M., Stinear, J. W., Wolf, S. L. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: Challenges and opportunities. Restorative Neurology and Neuroscience. 36 (3), 333-348 (2018).
  78. Proessl, F., et al. Characterizing off-target corticospinal responses to double-cone transcranial magnetic stimulation. Experimental Brain Research. 239 (4), 1099-1110 (2021).
  79. Dharmadasa, T., et al. The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS. Neuroscience Letters. 699, 84-90 (2019).
  80. Jung, N. H., et al. Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials. Brain Stimulation. 3 (2), 87-94 (2010).

Play Video

Cite This Article
Rebello-Sanchez, I., Parente, J., Pacheco-Barrios, K., Marduy, A., Pimenta, D. C., Lima, D., Slawka, E., Cardenas-Rojas, A., Rosa, G. R., Nazim, K., Datta, A., Fregni, F. Measuring Contralateral Silent Period Induced by Single-Pulse Transcranial Magnetic Stimulation to Investigate M1 Corticospinal Inhibition. J. Vis. Exp. (186), e64231, doi:10.3791/64231 (2022).

View Video