様々な光合成生物に関連するプラストグロビュール脂肪滴を単離するための迅速かつ効率的なプロトコルが提示されています。単離されたプラストグロビュールの調製を成功させることは、プロテオミクス解析やリピドミック解析などの詳細な分子調査に先立つ重要な第一歩です。
プラストグロビュール脂肪滴は、植物の葉緑体とシアノバクテリアの動的なサブコンパートメントです。光合成種に遍在しており、急速に変化する環境条件下でのチラコイド膜の適応とリモデリングにおいて中心的な役割を果たすと考えられています。高純度のプラストグロビュールを単離する能力は、プロテオミクス、リピドミック、およびその他の方法論による研究を大幅に促進しました。高純度と高収率のプラストグロビュールを使用すると、脂質やタンパク質の組成、酵素活性、タンパク質トポロジーなどの分子特性を調べることができます。この記事では、植物の葉組織の葉緑体からプラストグロビュールを分離するための迅速かつ効果的なプロトコルを提示し、トウモロコシの葉、復活植物の乾燥葉組織、 エラグロスチスニンデンシス、およびシアノバクテリウム、 シネコシスティス からプラストグロビュールおよび関連する脂肪滴構造を単離するための方法論的バリエーションを提示します PCC 6803。単離は、これらの脂質に富む粒子の低密度に依存しており、スクロース密度浮遊選鉱による精製を容易にします。この方法論は、多様な種からのプラストグロビュールの研究において有用であることが証明されます。
プラストグロビュールの組成と機能の現在の理解は、詳細なプロテオミクスおよびリピドミクス研究を通じて明らかになりました1,2,3,4,5。このような研究は、スクロース勾配を使用した効率的な分離のために非常に低い密度に依存する迅速かつ効果的な単離方法によって大いに助けられてきました。プラストグロビュールの分離の初期方法は、ブナの木(Fagus sylvatica)、スコッチほうき(Sarothamnus scoparius)、タマネギ(アリウムセパ)、ほうれん草(Spinacia oleracea)、パンジー(Viola tricolor)、コショウ(トウガラシ)、エンドウ豆(Pisum sativum)などの種から達成されました6,7,8,9,10,11 、12、13。葉緑体プラストグロビュールをより効率的かつより良い収量で単離するための更新された方法は、後にYtterbergらによって提示されました3,14。当初はシロイヌナズナの葉葉緑体のプラストグロビュールの研究に採用されていましたが、トウモロコシ(Zea mays)、トマト(Solanum lycopersicum)、ラブグラス(Eragrostis nindensis)、紫色の偽ブロム(Brachypodium distachyon)、野生のタバコ(Nicotiana benthamiana)など、単子葉植物と双子葉植物の両方の健康な葉組織にこの更新された方法を採用することに成功しました。;未発表の結果)。さらに、この分離法は、Synechocystis sp. PCC 6803およびAnabaena sp. PCC 712015を含むシアノバクテリアのプラスト小球、および復活植物E. nindensisの乾燥葉組織に適応することに成功しています。
健康な葉組織の葉緑体プラストグロビュールは、チラコイド膜16に物理的に接続されている。この物理的連続性にもかかわらず、2つの葉緑体サブコンパートメントは異なる脂質およびタンパク質組成を維持するが、2つのコンパートメント間の脂質およびタンパク質の調節された交換が提案されている2,4,17,18,19。実際、葉緑体と細胞質ゾルの間の中性脂質の輸送について、興味深い半融合モデルが最近提案されています19。プラストグロビュールおよびチラコイドの物理的連続性のために、健康な葉組織を有する単離方法は、ペレット化された粗チラコイド調製物の収集から始まり、その後、細胞質ゾル脂肪滴を単離するために使用される方法とは対照的に、チラコイドからプラストグロビュールを分離するために超音波処理される20.次に、スクロースクッション上での超遠心分離により、低密度プラストグロビュールがスクロースを通って浮遊し、チラコイド、核、およびその他の高密度材料から効果的に分離されます。対照的に、シアノバクテリアのプラストグロビュールは、乾燥した葉組織のプラストグロビュールと同様に、明らかに自由に浮遊する形で生体内に存在する。したがって、それらの単離は、スクロース勾配に直接浮遊することを含む。この記事では、健康な葉組織からの分離方法を示し、さらに、乾燥した葉組織またはシアノバクテリア培養物からプラストグロビュールを分離するために使用できる2つのバリエーションを示し、プラストグロビュールを研究できる生理学的幅と進化のコンテキストを大幅に拡大します。
単離されたプラストグロビュールは、その後、分子特性を調査するための任意の数のダウンストリーム分析に使用できます。我々は、A. thaliana葉組織から単離されたプラストグロビュールを、異なる環境条件または遺伝子型の下での広範なプロテオミクスおよびリピドミクス解析に使用し、ストレスに適応したタンパク質および脂質組成の選択的修飾を実証しました2,4,21,22。さらに、単離されたプラストグロビュールに関連するトランスリン酸化活性を示すインビトロキナーゼアッセイが実施されており22、タンパク質成分のオリゴマー状態が天然ゲル電気泳動を使用して調査されており21、プロテアーゼシェービングアッセイが実施されています23。
この方法の主な利点は、手順の相対的な速度です。私たちの経験では、以下に概説するプロトコルは約4時間以内に完全に完了することができます。葉組織からプラストグロビュールを単離する代替方法が記載されており、これにより、他の葉緑体サブ区画の同時単離が可能になる24。この代替方法は、他の葉緑体サブコンパートメントとの定量的比較が必要または望ましい場合に、いくつかの明確な利点を提供します。しかしながら、この代替方法もまたより面倒であり、そして同量の葉組織から単離されたプラスト小球の有意に低い収量を提供するであろう。プラストグロビュースの焦点を絞った研究が目的である場合、ここで概説する方法論が最適な選択です。それにもかかわらず、全葉および粗チラコイドアリコートはサンプル調製中に収集することができ、その後の比較のために参照サンプルを用意することを強くお勧めします。
材料に対する生理学的/生化学的変化を最小限に抑え、プラストグロビュールの豊富な成分である特定の光および熱に不安定なプレニル脂質色素を保護するには、4°Cで光から保護するために分離を行うことが重要です。上記のように、最初のステップは、緑色に発光する電球を使用して、安全ランプの下の冷蔵室で実行されます。実験室で行われる後続のステップは、薄暗い照明の下で行わ?…
The authors have nothing to disclose.
ルンドキスト研究室グループの研究は、NSF(MCB-2034631)およびUSDA(MICL08607)からP.K.L.への助成金によってサポートされています。著者らは、シアノバクテリアプラストグロビュール分離法の開発を支援してくれたキャリー・ハイザー博士(MSU)に感謝の意を表します。
AEBSF | Milipore Sigma | P7626 | |
Antipain.2HCl | Bachem | H-1765.0050BA | |
Aprotinin | Milipore Sigma | A6106 | |
Ascorbate | BDH | BDH9242 | |
Bestatin | Sigma Aldrich | B8385 | |
Beta-Glycerophosphate. 2Na5H2O | EMD Millipore | 35675 | |
Bovine Serum Albumin | Proliant Biological | 68700 | |
Chymostatin | Sigma Aldrich | C7268 | |
Eragrostis nindensis | N/A | N/A | |
E-64 | Milipore Sigma | E3132 | |
French Pressure cell (model FA-079) | SLM/Aminco | N/A | |
HEPES | Sigma Aldrich | H3375 | |
Leupeptin | Sigma Aldrich | L2884 | |
Magnesium Chloride | Sigma Aldrich | M8266 | |
Multitron shaking incubator | Infors HT | N/A | |
Phospho-ramidon.2 Na | Sigma Aldrich | R7385 | |
Potassium Hydroxide | Fisher Chemicals | M16050 | |
Reduced Cysteine | MP Biochemicals | 101444 | |
Sodium Fluoride | Sigma Aldrich | S7920 | |
Sodium Ortho-vanadate | Sigma Aldrich | 450243 | |
Sodium Pyrophosphate · 10H2O | Sigma Aldrich | 3850 | |
Sorbitol | Sigma Aldrich | S3889 | |
Sucrose | Sigma Aldrich | S9378 | |
Sylvania 15 W fluorescent Gro-Lux tube light bulb, 18" | Walmart | N/A | |
Synechocystis sp. PCC 6803 | N/A | N/A | |
Optima MAX-TL Ultracentrifuge | Beckman Coulter | A95761 | |
Waring Blender (1.2 L) | VWR | 58977-227 | Commercial blender |
Zea mays | N/A | N/A |