Summary

Tredimensionel kultur af vaskulariseret termogenisk fedtvæv fra mikrovaskulære fragmenter

Published: February 03, 2023
doi:

Summary

Her præsenterer vi en detaljeret protokol, der skitserer brugen af mikrovaskulære fragmenter isoleret fra gnaver- eller humant fedtvæv som en ligetil tilgang til at konstruere funktionelt, vaskulariseret beige fedtvæv.

Abstract

Engineering termogeniske fedtvæv (fx beige eller brune fedtvæv) er blevet undersøgt som en potentiel terapi for metaboliske sygdomme eller for design af personlige mikrovæv til sundhedsscreening og lægemiddeltestning. Nuværende strategier er ofte ret komplekse og undlader nøjagtigt fuldt ud at skildre de multicellulære og funktionelle egenskaber af termogeniske fedtvæv. Mikrovaskulære fragmenter, små intakte mikrokar bestående af arteriol, venuler og kapillærer isoleret fra fedtvæv, tjener som en enkelt autolog kilde til celler, der muliggør vaskularisering og dannelse af fedtvæv. Denne artikel beskriver metoder til optimering af dyrkningsbetingelser for at muliggøre generering af tredimensionelle, vaskulariserede og funktionelle termogeniske fedtvæv fra mikrovaskulære fragmenter, herunder protokoller til isolering af mikrovaskulære fragmenter fra fedtvæv og dyrkningsbetingelser. Derudover diskuteres bedste praksis, ligesom teknikker til karakterisering af de konstruerede væv, og prøveresultater fra både gnavere og humane mikrovaskulære fragmenter tilvejebringes. Denne tilgang har potentiale til at blive brugt til forståelse og udvikling af behandlinger for fedme og metabolisk sygdom.

Introduction

Målet med denne protokol er at beskrive en tilgang til udvikling af vaskulariseret beige fedtvæv fra en enkelt, potentielt autolog kilde, mikrovaskulært fragment (MVF). Brunt og beige fedtvæv har vist sig at vise gavnlige egenskaber relateret til metabolisk regulering; Den lille mængde af disse fedtvævsdepoter hos voksne begrænser imidlertid den potentielle indvirkning på systemisk metabolisme, især ved syge tilstande som fedme eller type 2-diabetes 1,2,3,4,5,6,7. Der er betydelig interesse for brunt / beige fedt som et terapeutisk mål for forebyggelse af de skadelige metaboliske virkninger forbundet med fedme og dens comorbiditeter 8,9,10,11,12.

MVF’er er karstrukturer, der kan isoleres direkte fra fedtvæv, dyrkes og vedligeholdes i en tredimensionel konfiguration i længere perioder13,14,15. Tidligere arbejde fra vores gruppe og andre er begyndt at udnytte MVF’ernes multicellulære og multipotente kapacitet, specifikt da det vedrører dannelse af fedtvæv16,17,18. Som en opbygning af dette arbejde demonstrerede vi for nylig, at MVF’er afledt af gnavermodeller af sund og type 2-diabetes19 og fra mennesker (voksne over 50 år)20 indeholdt celler, der kunne induceres til dannelse af termogent eller beige fedtvæv.

Heri er en innovativ tilgang, hvorfra en enkelt kilde MVF anvendes, ikke kun i stand til at skabe beige fedtvæv, men også dets tilknyttede og kritiske vaskulære komponent21. Brugen af denne teknik kunne være af stor værdi for undersøgelser på udkig efter en ligetil væv-manipuleret tilgang til termogeniske fedtvæv dannelse. I modsætning til andre metoder, der stræber efter at konstruere beige fedtvæv 22,23,24,25,26,27,28, kræver processen beskrevet i denne undersøgelse ikke anvendelse af flere celletyper eller komplekse induktionsregimer. Vaskulariserede beige og hvide fedtmodeller kan oprettes med MVF’er, der stammer fra gnavere og menneskelige kilder, hvilket viser et stort oversættelsespotentiale. Slutproduktet af denne protokol er en konstrueret beige termogeniske fedtvæv med en struktur og metabolisk funktion kan sammenlignes med brunt fedtvæv. Samlet set præsenterer denne protokol ideen om, at en let tilgængelig og muligvis autolog kilde MVF kan være en værdifuld terapeutisk intervention og værktøj til at studere metaboliske lidelser.

Protocol

Denne undersøgelse blev udført i overensstemmelse med dyrevelfærdsloven og gennemførelsesforordningerne om dyrevelfærd i overensstemmelse med principperne i vejledningen om pasning og brug af forsøgsdyr. Alle dyreforsøg blev godkendt af Institutional Animal Care and Use Committee ved University of Texas i San Antonio. BEMÆRK: Til nedenstående trin anvendes Lewis-hanrotter. Der skal foretages små protokoljusteringer for en kvindelig såvel som musemikrovaskulært fragment (MVF) samlin…

Representative Results

Der er et par vigtige fænotypiske morfologiske egenskaber ved beige / brunt fedtvæv: det er multilokulært / indeholder små lipiddråber, besidder et stort antal mitokondrier (årsagen til dets karakteristiske “brunlige” udseende in vivo), har tilsvarende en høj iltforbrugshastighed / mitokondriel bioenergetik, er stærkt vaskulariseret, har øget lipolyse / insulinstimuleret glukoseoptagelse og mest berygtet udtrykker høje niveauer af afkoblingsprotein 1 (UCP1), et mitokondrieprotein involveret i termogen…

Discussion

Området brun / beige fedtvævsteknik er stort set umoden 22,23,24,25,26,27,28, hvor hovedparten af fedtmodeller udvikles til hvidt fedtvæv 8,22,31. Konstrueret brunt / beige mikrovæv består typi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dr. Acosta støttes af National Institutes of Health tilskud CA148724 og TL1TR002647. Dr. Gonzalez Porras støttes af National Institute of Diabetes og fordøjelses- og nyresygdomme ved National Institutes of Health under tildelingsnummer F32-0DK122754. Dette arbejde blev delvist støttet af National Institutes of Health (5SC1DK122578) og University of Texas i San Antonio Department of Biomedical Engineering. Indholdet er udelukkende forfatternes ansvar og repræsenterer ikke nødvendigvis de officielle synspunkter fra National Institutes of Health. Figurer blev delvist oprettet med Biorender.com.

Materials

Aminocaproic Acid Sigma Aldrich A2504-100G Added in DMEM at the concentration of 1 mg/mL
Blunt-Tipped Scissors Fisher scientific 12-000-172 Sterilize in autoclave
Bovin Serum Albumin (BSA) Millipore 126575-10GM Diluted in PBS to 4 mg/mL and 1 mg/mL
Collagenase Type 1 Fisher scientific NC9633623 Diluted to 6 mg/mL in BSA 4 mg/mL, Digestion of minced fat
Dexamethasone Thermo Scientific AC230302500 Diluted in ethanol at a 2 mg/ml stock concentration
Disposable underpads Fisher scientific 23-666-062 For fluid absorption during surgery
Dissecting Scissors Fisher scientific 08-951-5 Sterilize in autoclave
Dulbecco′s Modified Eagle′s Medium (DMEM) Fisher scientific 11885092
Dulbecco′s Modified Eagle′s Medium/Nutrient Mixture F-12 Ham (DMEM/F12) Sigma Aldrich D8062
Fetal Bovine Serum  Fisher scientific 16140089 Added in DMEM to 20% v/v.
Fibrinogen  Sigma Aldrich F8630-25G Solubilized in DMEM at the concentration of 20 mg/mL, Protein found in blood plasma and main component of hydrogel
Flask, 250 mL Fisher scientific FB500250 Allows for digestion of fat using a large surface area
Forceps Fisher scientific 50-264-21 Sterilize in autoclave, For handling of tissue and filters
Forskolin Sigma Aldrich F6886 Diluted in ethanol at a 10 mM stock concentration
Human MVF Advanced Solutions Life Scienes, LLC https://www.advancedsolutions.com/microvessels Human MVFs (hMVFs) isolated from three different patients (52-, 54-, and 56-year old females) were used in the current study. 
Indomethacine  Sigma Aldrich I7378 Diluted in ethanol at a 12.5 mM stock concentration
Insulin from porcine pancreas Sigma Aldrich I5523 Diluted in 0.01 N HCl at a 5 mg/ml stock concentration
MycoZap Fisher scientific NC9023832 Added in DMEM to 0.2% w/v, Mycoplasma Prophylactic 
Pennycilin/Streptomycin (10,000 U/mL) Fisher scientific 15140122 Added in DMEM to 1% v/v.
Petri dishes, polystyrene (100 mm x 15 mm). Fisher scientific 351029 3 for removal of blood vessels and mincing, 8 (lid) for presoaking of screens & 8 (dish) for use when filtering with 500 or 37 µM screens
Petri dishes, polystyrene (35 mm x 10 mm). Fisher scientific 50-202-036 For counting fragments
Phosphate Buffer Saline (PBS) Fisher scientific 14-190-250 Diluted to 1x with sterile deionized water.
Rat Clippers (Andwin Mini Arco Pet Trimmer) Fisher scientific NC0854141
Rosiglitazone Fisher scientific R0106200MG Diluted in DMSO at a 10 mM stock concentration
Scissors Fine Science Tools 14059-11 1 for initial incision, 1 for epididymal incision, 1 for tip clipping
Screen  37 µM  Carolina Biological Supply Company 652222R Cut into 3" rounded squares and sterilized in ethylene oxide, Fragment entrapment and removal of very small fragments/single cells and debris
Screen 500 µM  Carolina Biological Supply Company 652222F Cut into 3" rounded squares and sterilized in ethylene oxide, Removes larger fragments/debris
Serrated Hemostat Fisher scientific 12-000-171 Sterilize in autoclave, For clamping of skin before incision
Steriflip Filter 0.22 μm  Millipore SE1M179M6
Thrombin Fisher scientific 6051601KU Diluted in deionzed water to 10 U/mL, Used as a clotting agent turning fibrinogen to fibrin
Thyroid hormone (T3) Sigma Aldrich T2877 Diluted in 1N NaOH at a 0.02 mM stock concentration
Zucker diabetic fatty (ZDF) rats – obese (FA/FA) or lean (FA/+) male  Charles River https://www.criver.com/products-services/find-model/zdf-rat-lean-fa?region=3611
https://www.criver.com/products-services/find-model/zdf-rat-obese?region=3611
Obtained from Charles River (Wilmington, MA). Rats were acquired at 4 weeks of age and fed Purina 5008 until euthanasia (15-19 weeks of age). Glucose levels (blood from the lateral saphenous vein) were greater than 300 mg/dL in all FA/FA rats used in the study. All animals were housed in a temperature-controlled environment with a 12-h light-dark cycle and fed ad libitum.

References

  1. Cohen, P., Spiegelman, B. M. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes. 64 (7), 2346-2351 (2015).
  2. Liu, X., et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology. 156 (7), 2461-2469 (2015).
  3. Tharp, K. M., Stahl, A. Bioengineering beige adipose tissue therapeutics. Frontiers in Endocrinology. 6, 164 (2015).
  4. Barquissau, V., et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Molecular Metabolism. 5 (5), 352-365 (2016).
  5. Kim, S. H., Plutzky, J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes & Metabolism Journal. 40 (1), 12-21 (2016).
  6. Lizcano, F., Vargas, D. Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity. International Journal of Endocrinology. 2016, 9542061 (2016).
  7. Mulya, A., Kirwan, J. P. Brown and beige adipose tissue: therapy for obesity and its comorbidities. Endocrinology and Metabolism Clinics of North America. 45 (3), 605-621 (2016).
  8. Murphy, C. S., Liaw, L., Reagan, M. R. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomedical Engineering. 1, 27 (2019).
  9. Srivastava, S., Veech, R. L. Brown and brite: The fat soldiers in the anti-obesity fight. Frontiers in Physiology. 10, 38 (2019).
  10. Samuelson, I., Vidal-Puig, A. Studying brown adipose tissue in a human in vitro context. Frontiers in Endocrinology. 11, 629 (2020).
  11. Wang, C. -. H., et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Science Translational Medicine. 12 (558), (2020).
  12. Kaisanlahti, A., Glumoff, T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. Journal of Physiology and Biochemistry. 75 (1), 1-10 (2019).
  13. Sato, N., et al. Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvascular Research. 33 (2), 194-210 (1987).
  14. Laschke, M. W., Später, T., Menger, M. D. Microvascular fragments: More than just natural vascularization units. Trends in Biotechnology. 39 (1), 24-33 (2021).
  15. Hoying, J. B., Boswell, C. A., Williams, S. K. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cellular & Developmental Biology-Animal. 32 (7), 409-419 (1996).
  16. Acosta, F. M., Stojkova, K., Brey, E. M., Rathbone, C. R. A straightforward approach to engineer vascularized adipose tissue using microvascular fragments. Tissue Engineering. Part A. 26 (15-16), 905-914 (2020).
  17. Acosta, F. M., et al. Adipogenic differentiation alters properties of vascularized tissue-engineered skeletal muscle. Tissue Engineering. Part A. 28 (1-2), 54-68 (2021).
  18. Strobel, H. A., Gerton, T., Hoying, J. B. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. 13 (3), 035022 (2021).
  19. Acosta, F. M., et al. Engineering functional vascularized beige adipose tissue from microvascular fragments of models of healthy and type II diabetes conditions. Journal of Tissue Engineering. 13, 20417314221109337 (2022).
  20. Gonzalez Porras, M. A., Stojkova, K., Acosta, F. M., Rathbone, C. R., Brey, E. M. Engineering human beige adipose tissue. Frontiers in Bioengineering and Biotechnology. 10, 906395 (2022).
  21. Herold, J., Kalucka, J. Angiogenesis in adipose tissue: The interplay between adipose and endothelial cells. Frontiers in Physiology. 11, 1861 (2021).
  22. McCarthy, M., et al. Fat-On-A-Chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Engineering Part B: Reviews. 26 (6), 586-595 (2020).
  23. Klingelhutz, A. J., et al. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Scientific Reports. 8 (1), 523 (2018).
  24. Yang, J. P., et al. Metabolically active three-dimensional brown adipose tissue engineered from white adipose-derived stem cells. Tissue Engineering. Part A. 23 (7-8), 253-262 (2017).
  25. Vaicik, M. K., et al. Hydrogel-based engineering of beige adipose tissue. Journal of Materials Chemistry B. 3 (40), 7903-7911 (2015).
  26. Tharp, K. M., Stahl, A. Bioengineering beige adipose tissue therapeutics. Frontiers in Endocrinology. 6, 164 (2015).
  27. Tharp, K. M., et al. Matrix-assisted transplantation of functional beige adipose tissue. Diabetes. 64 (11), 3713-3724 (2015).
  28. Harms, M. J., et al. Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Reports. 27 (1), 213-225 (2019).
  29. Frueh, F. S., Später, T., Scheuer, C., Menger, M. D., Laschke, M. W. Isolation of murine adipose tissue-derived microvascular fragments as vascularization units for tissue engineering. Journal of Visualized Experiments. (122), e55721 (2017).
  30. Cannon, B., Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiological Reviews. 84 (1), 277-359 (2004).
  31. Unser, A. M., Tian, Y., Xie, Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnology Advances. 33, 962-979 (2015).
  32. Dani, V., Yao, X., Dani, C. Transplantation of fat tissues and iPSC-derived energy expenditure adipocytes to counteract obesity-driven metabolic disorders: Current strategies and future perspectives. Reviews in Endocrine & Metabolic Disorders. 23 (1), 103-110 (2022).
  33. Xu, X., et al. Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration. Journal of Endodontics. 47 (7), 1092-1100 (2021).
  34. McDaniel, J. S., Pilia, M., Ward, C. L., Pollot, B. E., Rathbone, C. R. Characterization and multilineage potential of cells derived from isolated microvascular fragments. Journal of Surgical Research. 192 (1), 214-222 (2014).
  35. Gealekman, O., et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 123 (2), 186-194 (2011).
  36. Altalhi, W., Hatkar, R., Hoying, J. B., Aghazadeh, Y., Nunes, S. S. Type I diabetes delays perfusion and engraftment of 3D constructs by impinging on angiogenesis; which can be rescued by hepatocyte growth factor supplementation. Cellular and Molecular Bioengineering. 12 (5), 443-454 (2019).
  37. Altalhi, W., Sun, X., Sivak, J. M., Husain, M., Nunes, S. S. Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials. 119, 23-32 (2017).
  38. Laschke, M. W., et al. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity. European Cells & Materials. 28, 287-298 (2014).
  39. Später, T., et al. Vascularization of microvascular fragment isolates from visceral and subcutaneous adipose tissue of mice. Tissue Engineering and Regenerative Medicine. 19 (1), 161-175 (2021).
  40. Später, T., et al. Adipose tissue-derived microvascular fragments from male and female fat donors exhibit a comparable vascularization capacity. Frontiers in Bioengineering and Biotechnology. 9, 777687 (2021).
  41. Laschke, M. W., Menger, M. D. The simpler, the better: tissue vascularization using the body’s own resources. Trends in Biotechnology. 40 (3), 281-290 (2022).
  42. Yang, F., Cohen, R. N., Brey, E. M. Optimization of co-culture conditions for a human vascularized adipose tissue model. Bioengineering. 7 (3), 114 (2020).
  43. Pilkington, A. -. C., Paz, H. A., Wankhade, U. D. Beige adipose tissue identification and marker specificity-Overview. Frontiers in Endocrinology. 12, 599134 (2021).
  44. Chiou, G., et al. Scaffold architecture and matrix strain modulate mesenchymal cell and microvascular growth and development in a time dependent manner. Cellular and Molecular Bioengineering. 13 (5), 507-526 (2020).

Play Video

Cite This Article
Acosta, F. M., Gonzalez Porras, M. A., Stojkova, K., Pacelli, S., Rathbone, C. R., Brey, E. M. Three-Dimensional Culture of Vascularized Thermogenic Adipose Tissue from Microvascular Fragments. J. Vis. Exp. (192), e64650, doi:10.3791/64650 (2023).

View Video