Apresentamos um protocolo detalhado para microscopia eletrônica e de luz correlativa pós-incorporação de Epon usando uma proteína fluorescente chamada mScarlet. Este método pode manter a fluorescência e a ultraestrutura simultaneamente. Esta técnica é passível de uma ampla variedade de aplicações biológicas.
A microscopia correlativa de luz e eletrônica (CLEM) é uma microscopia abrangente que combina as informações de localização fornecidas pela microscopia de fluorescência (FM) e o contexto da ultraestrutura celular adquirida pela microscopia eletrônica (ME). CLEM é um trade-off entre fluorescência e ultraestrutura e, geralmente, a ultraestrutura compromete a fluorescência. Em comparação com outras resinas de incorporação hidrofílica, como metacrilato de glicidila, HM20 ou K4M, Epon é superior em propriedades de preservação e seccionamento de ultraestrutura. Anteriormente, demonstramos que o mEosEM pode sobreviver à fixação de tetróxido de ósmio e à incorporação de Epon. Usando o mEosEM, conseguimos, pela primeira vez, o Epon pós-incorporação CLEM, que mantém a fluorescência e a ultraestrutura simultaneamente. Aqui, fornecemos detalhes passo a passo sobre a preparação da amostra EM, a imagem FM, a imagem EM e o alinhamento da imagem. Também aprimoramos os procedimentos de identificação da mesma célula por imagem de FM durante a imagem de EM e detalhamos o registro entre as imagens de FM e EM. Acreditamos que se pode facilmente obter Epon pós-incorporação de microscopia correlativa de luz e eletrônica seguindo este novo protocolo em instalações tradicionais de EM.
A microscopia de fluorescência (FM) pode ser usada para obter a localização e distribuição da proteína-alvo. No entanto, o contexto que envolve a proteína-alvo é perdido, o que é crucial para investigar a proteína alvo completamente. A microscopia eletrônica (ME) tem a mais alta resolução de imagem, fornecendo vários detalhes subcelulares. No entanto, a EM carece de rotulagem de alvo. Ao mesclar com precisão a imagem de fluorescência obtida por FM com a imagem cinza adquirida por EM, a microscopia correlativa de luz e eletrônica (CLEM) pode combinar as informações obtidas por esses dois modos de imagem 1,2,3,4.
CLEM é um trade-off entre fluorescência e ultraestrutura1. Devido às limitações das proteínas fluorescentes atuais e aos procedimentos tradicionais de preparação de amostras de EM, especialmente o uso de ácido ósmico (OsO4) e resinas hidrofóbicas como o Epon, a ultraestrutura sempre compromete a fluorescência5. OsO4 é um reagente indispensável na preparação de amostras de EM, que é usado para melhorar o contraste de imagens EM. Comparado com outras resinas incorporadoras, o Epon é superior em propriedades de preservação e seccionamento ultraestrutural5. No entanto, nenhuma proteína fluorescente pode reter o sinal de fluorescência após o tratamento de OsO4 e incorporação de Epon6. Para superar as limitações das proteínas fluorescentes, foi desenvolvido o CLEM pré-incorporação, no qual a imagem de FM é feita antes do preparo da amostra deEM6. No entanto, a desvantagem da pré-incorporação do CLEM é o registro impreciso entre as imagens FM e EM5.
Ao contrário, o método CLEM pós-incorporação realiza a imagem de FM após o preparo da amostra EM, cuja precisão de registro pode chegar a 6-7 nm 5,6. Para reter a fluorescência das proteínas fluorescentes, concentrações muito baixas de OsO4 (0,001%)3 ou os métodos de preparação de EM4,7 congelados a alta pressão (HPF) e substituição por congelamento (FS)4,7 têm sido usados às custas do comprometimento da ultraestrutura ou do contraste da imagem EM. O desenvolvimento de mEos4b promove grandemente o progresso do CLEM pós-incorporação, embora o metacrilato de glicidila seja usado como resina de incorporação5. Com o desenvolvimento do mEosEM, que pode sobreviver à coloração OsO4 e à incorporação de Epon, a super-resolução CLEM pós-incorporação pós-Epon foi alcançada pela primeira vez, mantendo a fluorescência e a ultraestruturasimultaneamente6. Após o mEosEM, várias proteínas fluorescentes que podem sobreviver à coloração de OsO4 e à incorporação de Epon foram desenvolvidas 8,9,10,11. Isso promove muito o desenvolvimento do CLEM.
Há três aspectos fundamentais para o CLEM pós-incorporação do Epon. A primeira é a proteína fluorescente, que deve manter o sinal fluorescente após o preparo da amostra EM. De acordo com nossa experiência, mScarlet é superior a outras proteínas fluorescentes relatadas. A segunda é como encontrar a mesma célula fotografada por imagem FM em imagens EM. Para resolver esse problema, melhoramos o procedimento para essa etapa para que se possa encontrar prontamente a célula alvo. O último é o método para alinhar a imagem FM com a imagem EM. Aqui, detalhamos o registro entre as imagens FM e EM. Neste protocolo, expressamos mScarlet em neurônios VGLUT2 e demonstramos que mScarlet pode ter como alvo lisossomos secundários usando Epon pós-incorporação CLEM. Fornecemos detalhes passo a passo para o CLEM pós-incorporação da Epon, sem comprometer a fluorescência e a ultraestrutura.
O protocolo aqui apresentado é um método de imagem versátil, que pode combinar as informações de localização da proteína-alvo da microscopia de luz (LM) e o contexto em torno da proteína-alvo da microscopia eletrônica (ME)6. Com as limitações das proteínas fluorescentes atuais, o método amplamente utilizado é a pré-incorporação de microscopia eletrônica e de luz correlativa (CLEM), o que significa que a imagem de LM é feita antes da preparação da amostra EM. Quase todas as pr…
The authors have nothing to disclose.
Este projeto foi apoiado pela Fundação Nacional de Ciências Naturais da China (32201235 a Zhifei Fu), a Fundação de Ciências Naturais da Província de Fujian, China (2022J01287 a Zhifei Fu), a Fundação de Pesquisa para Talentos Avançados da Universidade Médica de Fujian, China (XRCZX2021013 a Zhifei Fu), a Fundação de Ciências Especiais de Finanças da Província de Fujian, China (22SCZZX002 a Zhifei Fu), Fundação do NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, e Fujian Maternity and Child Health Hospital (2022-NHP-04 para Zhifei Fu). Agradecemos a Linying Zhou, Minxia Wu, Xi Lin e Yan Hu no Centro de Serviços de Tecnologia Pública, Fujian Medical University pelo apoio com a preparação de amostras EM e imagens EM.
0.2 M Phosphate Buffer (PB) | NaH2PO4 · 2H2O+Na2HPO4 · 12H2O | ||
0.2 M Tris-Cl (pH 8.5) | Shanghai yuanye Bio-Technology | R26284 | |
25% Glutaraldehyde (GA) | Alfa Aesar | A17876 | Hazardous chemical |
Abbelight 3D | Nanolnsights | ||
Acetone | SCR | 10000418 | |
Ammonium hydroxide | J&K Scientific | 335213 | |
BioPhotometer D30 | eppendorf | ||
Cleaning buffer of cover glasses | 50 mL Ammonium hydroxide, 50 mL Hydrogen peroxide, 250 mL H2O | ||
Coverglass | Warner | 64-0715 | |
DABCO | Sigma | 290734 | Hazardous chemical |
DDSA | SPI company | GS02827 | Hazardous chemical |
Desktop centrifuge | WIGGENS | MINICEN 10E | |
Diamond knife | DiATOME | MX6353 | |
DMP-30 | SPI company | GS02823 | Hazardous chemical |
DNA transfection reagent | Thermo Fisher | 2696953 | Lipofectamine 3000 Transfection Kit |
Epon 812 | SPI company | GS02659 | Hazardous chemical |
Ethanol | SCR | 10009218 | |
Fiji image J | National Institutes of Health | ||
Fixative solution | 4% PFA+0.25% GA+0.02 M PB | ||
Formvar | Sigma | 9823 | |
Glycerol | SCR | 10010618 | |
Gold nanoparticles | Corpuscular | 790120-010 | |
Gradient resin | Acetone to resin 3:1, 1:1, 1:3 | ||
Hydrofluoric acid | SCR | 10011118 | |
Hydrogen peroxide | SCR | 10011218 | |
ICY (https://icy.bioimageanalysis.org/about/) | Easy CLEMv0 Plugin | ||
Imaging chamber | Thermo Fisher | A7816 | |
Large gelatin capsules | Electron Microscopy Sciences | 70117 | |
Mounting buffer | Mowiol 4-88, Glycerol, 0.2 M Tris-Cl (pH 8.5), DABCO | ||
Mowiol 4-88 | Sigma | 9002-89-5 | |
Na2HPO4 ž12H2O | SCR | 10020318 | |
NaH2PO4 ž2H2O | SCR | 20040718 | |
NMA | SPI company | GS02828 | Hazardous chemical |
Oligonucleotide primers | Takara Biomedical Technology (Beijing) | Three oligonucleotides primers were used to detect Vglut2-ires-Cre and wild-type simultaneously. The primers 5,-ATCGACCGGTAATGCAGGCAA-3, and 5,-CGGTACCACCAAATCTTACGG-3, aimed to detect Vglut2-ires-Cre. The primers 5,-CGGTACCACCAAATCTTACGG-3, and 5,-CATGGTCTGTTTTGAATTCAG-3, aimed to detect wild-type. | |
Oscillating microtome | Leica | VT1000S | |
Osmium tetroxide | SCR | L01210302 | Hazardous chemical |
OsO4 solution | 1% Osmium tetroxide+1.5% K4Fe (CN)6·3H2O | ||
Parafilm | Amcor | PM-996 | |
Paraformaldehyde (PFA) | SCR | 80096618 | Hazardous chemical |
Perfusion buffer | 4% PFA+0.1 M PB | ||
Pioloform | Sigma | 63148-65-2 | Hazardous chemical |
Poly-L-lysine | Sigma | 25986-63-0 | |
Potassium ferrocyanide (K4Fe (CN)6·3H2O) | SCR | 10016818 | |
Scalpel blades | Merck | S2771 | |
Scalpel handles | Merck | S2896-1EA | |
Stereomicroscope | OLYMPUS | MVX10 | |
Transgenic mice | The Jackson Laboratory | Vglut2-ires-Cre mice (strain: 129S6/SvEvTac) were housed in standard conditions (25 °C, a 12 h light/dark cycle, with water and food given ad libitum. Male and Female mice were used at 2–3 months old, weight range 20-30 g. | |
Transmission electron microscope (TEM) | FEI | TECNAL G2 | |
UA solution (2% UA) | Aqueous solution | ||
Ultramicrotome | Leica | LEICA EM UC6 | |
Uranyl acetate (UA) | TED PELLA | 19481 | Hazardous chemical |