Bu makalenin birincil amacı, mikroelektrot Kazığa oturtma yöntemini kullanarak orta serebral arter membran potansiyelinin (Vm) nasıl kaydetilme ayrıntılarını sağlamalıdır. Kanüle orta serebral arter miyojenik tonu elde etmek için dengelenmiş, ve damar duvarı yüksek direnç mikroelektrotları kullanılarak kazığa olduğunu.
Membran potansiyeli (Vm) vasküler pürüzsüz kas hücrelerinin damar tonu ve böylece bir organ kan akışını belirler. Hastalık koşullarında Vm düzenleyen iyon kanalları ve elektrojenik pompalar ifade ve fonksiyon değişiklikleri potansiyel vmdeğiştirebilir, vasküler ton, ve kan akışı. Böylece, Elektrofizyoloji temel bir anlayış ve doğru sağlıklı ve hastalıklı Devletler Vm kaydetmek için gerekli yöntemleri esastır. Bu yöntem v m ‘yi geri yüklemek için farklı farmakolojik ajanlar kullanarak modül Vm izin verecektir. Her ne kadar çeşitli yöntemler vardır, her biri avantajları ve dezavantajları ile, bu makalede mikroelektrot Kazığa oturtma yöntemi kullanarak orta serebral arter gibi kanüllü direnç damarlarından Vm kaydetmek için protokoller sağlar. Orta serebral arterlerin bir miyografi odasında miyojenik tonu elde etmek için izin verilir, ve damar duvarı yüksek direnç mikroelektrotlar kullanılarak kazığa. Vm sinyali, Digitized ve analiz edilen bir elektrometre aracılığıyla toplanır. Bu yöntem, hücrelere zarar vermeden ve membran direncini değiştirmeden bir damar duvarının Vm ‘nin doğru bir şekilde okunmasını sağlar.
Bir hücrenin membran potansiyeli (Vm), plazma membranında iyonik şarjın göreceli farkını ve membranın bu iyonlara göreli geçirgenliğini ifade eder. Vm , iyonların diferansiyel dağılımı ile üretilir ve iyon kanalları ve pompaları ile korunur. K+, na+ve CL gibi Iyon kanalları, dinlenme Vm‘ye önemli ölçüde katkıda bulunur. Vasküler pürüzsüz Kas hücreleri (VSMCs) dört farklı türde K+ kanal1, iki tip gerilim-Gated CA2 + kanal (Vgcc)2, iki tip CL− kanal3, 4 , 5, mağaza tarafından işletilen CA2 + kanallar6, Stretch-aktive Kif kanalları7,8, ve elektrojenik Sodyum-Potasyum ATPaz pompaları9 plazma membranlarında, hepsi olabilir Vmdüzenlenmesi dahil.
VSMCs Vm lümen basıncına bağlıdır. Basınçlı olmayan damarlarda, Vm -50 ila-65 MV arasındadır, ancak basınçlı arter segmentlerinde vm -37-47 MV10arasındadır. İntravasküler basınç yükselmesi VSMCs11depolarize neden olur, vgcc açılış için eşik azalır ve miyokojenik ton gelişimine katkı kalsiyum akımı artar12. Aksine, pasif veya basınçlı olmayan damarlarda, yüksek K+ kanal aktivitesi nedeniyle membran hiperpolarizasyonu, VGCC ‘nin açılmasını önleyecek, sınırlı kalsiyum girişine ve hücre içi kalsiyum azalmasına neden olur, daha az katkı vasküler ton13. Böylece, lümen basıncında yapılan değişikliklerden dolayı Vm , vasküler ton gelişiminde önemli bir rol oynamaktadır ve hem VGCC hem de K+ kanalları vm‘nin düzenlenmesi konusunda önemli bir rol oynamaktadır.
Vm gemi tipi ve türler arasında değişir. Vm -54 ± 1,3 MV içinde Gine domuzu üstün mezenterik arter şeritleri14,-45 ± 1 mV Rat orta serebral arterlerde içinde 60 mmHg lümen basıncı12, ve-35 ± 1 mV sıçan parankimal arter içinde 40 mmHg lümen basıncı15. Uzanmış sıçan lenfatik kas içinde kaydedilen istirahat Vm -48 ± 2 mV16. Vm serebral VSMCs periferik arterlerde daha negatiftir. Karşılaştırıldığında, kedi orta serebral arterlerin yaklaşık bir Vm olduğu bildirilmiştir-70 MV, mezenterik ve koroner arterlerin olması bildirildi iken-49 ve-58 MV, sırasıyla17,18. Vasküler yataklarda Vm ‘deki farklar iyon kanallarının ve elektrojenik Sodyum-Potasyum pompaların ifade ve fonksiyonlarında farklılıklar gösterebilir.
Vm ‘de artar ve azalır, sırasıyla membran depolarizasyon ve hiperpolarizasyon olarak adlandırılır. Vm ‘deki bu değişiklikler, iyon kanallı gating, hücre sinyalizasyon, kas kasılma ve eylem potansiyel yayılma gibi birçok fizyolojik süreçte merkezi bir rol oynamaktadır. Sabit bir basınçta, K+ kanallarını aktive eden birçok endojen ve sentetik vazodilatör bileşiği membran hiperpolarizasyonuna neden olur ve vazodikasyon1,13ile sonuçlanır. Tersine, sürekli membran depolarizasyon agonist kaynaklı veya reseptör aracılı vazokonstriksiyon19hayati önem taşımaktadır. Vm yalnızca vgcc13 aracılığıyla CA2 + akımı düzenleyen değil, aynı zamanda CA 2+ ‘ nın dahili mağazalardan20,21 ve CA2 +-duyarlılığından etkileneceği kritik bir değişkendir kontril cihaz22.
Farklı hücre türlerinden Vm kaydetmek için çeşitli yöntemler olsa da, kanüle damarların mikroelektrot Kazığa oturtma yöntemi toplanan veriler izole vsmcs elde edilen verilerden daha fizyolojik gibi görünüyor. Mevcut kelepçe yöntemlerini kullanarak yalıtılmış VSMC ‘den kaydedildiğinde, Vm VSMCs24‘ te spontan geçici hiperpolarizasyon olarak görülür. Yalıtılmış VSMCs syncytium değildir ve seri direncinde yapılan değişiklikler Vm‘nin osiloryumu davranışına katkıda bulunabilir. Öte yandan, vm bozulmamış damarlardan kaydedildiğinde osilasyon davranışı görülmez, muhtemelen arter içinde restorasyonudur olan ve istikrarlı bir Vm ‘ye giden gemi boyunca toplanan vsmcs arasında hücre hücresi teması nedeniyle 24. böylece, standart mikroelektrot Kazığa oturtma tekniği kullanılarak basınçlı damarlardan Vm ölçümü, fizyolojik koşullara nispeten yakındır.
Kanule edilen damarlardan vm kayıt hayati bilgi sağlayabilir, restorasyonudur vm vsmcs vasküler ton ve kan akışının önemli belirleyici biridir, ve vm modülasyon dilate ya da bir yol sağlayabilir kan damarlarını sıkı sıkıdır. Böylece, Vmkaydında yer alan metodolojisi anlamak önemlidir. Bu makalede, mikroelektrot Kazığa oturtma yöntemi kullanılarak kanüle orta serebral arterlerden (MCAS) Vm hücre içi kayıt açıklanmaktadır. Bu protokol MCAS hazırlamak için nasıl açıklayacaktır, mikroelektrotlar, elektrometre kurmak ve Vmkaydetmek için Kazığa oturtma yöntemi gerçekleştirmek. Ayrıca, temsili veri, bu yöntem ve olası sorunları kullanırken karşılaşılan ortak sorunlar ele alınmıştır.
Bu makalede, bir kanüle damar hazırlama Vm kaydetmek için keskin bir mikroelektrot Kazığa oturtma yöntemi kullanmak için gerekli adımları sağlar. Bu yöntem yaygın olarak kullanılır ve yüksek kaliteli, tutarlı bir dizi deneysel soruya cevap Vm kayıtları sunuyor.
Bazı kritik hususlar ve sorun giderme adımları, yöntemin başarısını sağlamak için burada açıklanmıştır. Mikroelektrot (netlik ve direnç) ve hücresel Proses kalitesi Vm‘…
The authors have nothing to disclose.
Bu çalışma UMMC gelen Intramural destek araştırma programı (IRP) tarafından hibe tarafından kısmen desteklenmektedir, AHA Scientist kalkınma Grant (13, 14000006) coşkun R. Pabbidi verilir.
Dissection instruments | |||
Aneshetic Vaporiser | Parkland scientific | V3000PK | |
Dissection microscope | Nikon Instruments Inc., NY | Eclipse Ti-S | |
Kleine Guillotine Type 7575 | Harvard Apparatus, MA | 73-198 | |
Littauer Bone Cutter | Fine science tools | 16152-15 | |
Moria MC40 Ultra Fine Forceps | Fine science tools | 11370-40 | |
Surgical scissors Sharp-Blunt | Fine science tools | 14008-14 | |
Suture | Harvard Apparatus | 72-3287 | |
Vannas Spring Scissors | Fine science tools | 15018-10 | |
Electrophysiology Instruments | |||
Charge-coupled device camera | Qimaging, , BC | Retiga 2000R | |
Differential electrometer amplifier | WPI | FD223A | |
In-line pressure transducer | Harvard Apparatus, MA | MA1 72-4496 | |
Micromanipulator | Thor labs | PCS-5400 | |
Microelectrodes | Warner Instruments LLC, CT | G200-6, | |
Micro Fil (Microfiber syringe) | WPI | MF28G67-5 | |
Microelectrode holder | WPI | MEH1SF | |
Myograph | Living Systems Instrumentation, VT | CH-1-SH | |
Puller | Sutter Instrument, San Rafael, CA | P-97 | |
Vibration-free table | TMC | 3435-14 | |
Softwares | |||
Clampex 10 | Molecular devices | ||
p Clamp 10 | Molecular devices | ||
Imaging software | Nikon, NY | NIS-elements | |
Chemicals | |||
NaCl | Sigma | S7653 | |
KCl | Sigma | P4504 | |
MgSO4 | Sigma | M7506 | |
CaCl2 | Sigma | C3881 | |
HEPES | Sigma | H7006 | |
Glucose | Sigma | G7021 | |
NaH2PO4 | Sigma | S0751 | |
NaHCO3 | Sigma | S5761 |