Özet

Fareler Ikincil motor korteks bilateral lokal saha potansiyel kayıt ile Yarımküre lateralizasyon değerlendirilmesi

Published: July 31, 2019
doi:

Özet

Biz iki taraflı ikincil motor korteks (m2) fareler, Yarımküre lateralizasyonu değerlendirmek için uygulanabilir yerel alan potansiyeli (LFP) içinde vivo elektrofizyolojik kayıt sunuyoruz. Çalışmada WT kontrolleri ile karşılaştırıldığında APP/PS1 fareler sol ve sağ m2 arasında senkronizasyon değişen seviyeleri ortaya çıktı.

Abstract

Bu makalede, hem In vivo ikili kayıt ve yerel alan potansiyeli (LFP), olası lateralite açıkları değerlendirmek için yararlı fareler kortikal alanlarda, hem de tam, ayrıntılı prosedürler göstermektedir beyin bağlantısı ve kemirgenler nöral ağ faaliyetlerinin bağlantı değerlendirilmesi. Alzheimer hastalığı (AD), ortak bir nörodejeneratif hastalık altta yatan patolojik mekanizmalar, büyük ölçüde bilinmiyor kalır. Değiştirilmiş beyin lateralite yaşlanma insanlar gösterilmiştir, ancak anormal lateralizasyon AD erken belirtileri biri olduğunu tespit edilmedi olup olmadığını. Bunu incelemek için 3-5 aylık reklam modeli fareler, APP/PS1 ve littermate Wild Type (WT) denetimleriyle bilateral LFPs ‘leri kaydettik. Sol ve sağ ikincil motor korteks (m2), özellikle Gamma bandında, WT kontrolleri daha APP/PS1 fareler daha senkronize edildi, bu AD fare modelinde bilateral m2 reddedilen hemferik asimetri düşündürmektedir. Özellikle, kayıt ve veri analizi süreçleri esnek ve yürütmek kolaydır, ve aynı zamanda nöronal devreler odaklanmak deneyler yaparken diğer beyin yolları uygulanabilir.

Introduction

Alzheimer hastalığı (ad) demans en yaygın biçimidir1,2. Ekstrellüler beta amiloid proteini (β-amiloid protein, Aβ) biriktirme ve hücre içi neurofibriller Tangles (NFTS), ad3,4,5‘ in ana patolojik özelliklerinden biridir, ancak reklam patogenezi büyük ölçüde belirsiz kalır. Serebral korteks, biliş ve hafızada önemli bir yapı, AD6‘ da bozulmuş, yavaş yürüyüş gibi motor açıkları, çevreye gezinme zorluk ve yürüme bozuklukları7yaş ilerleyen ile ortaya çıkar. Aβ birikintisi ve nöroofibriller taneler de Premotor korteks (PMC) ve ek motor alanı (SMA) ad hastalar8 ve bilişsel etkilenen büyük yetişkinler9, bir özürlü motor katılımı gösteren gözlenen AD patogenezinde sistem.

Beyin, uzunlamasına bir fisşuraya bölünen iki farklı serebral hemisferler tarafından oluşur. Sağlıklı bir beyin, “lateralizasyon” olarakadlandırılan, hem yapısal hem de fonksiyonel asimetriler sergiler, beyin verimli bir şekilde birden fazla görev ve faaliyetler ile başa çıkmak için izin. Yaşlanma, beyin lateralite içinde bir azalma ile birlikte, biliş ve lokomotif bir bozulma ile sonuçlanır11,12. Sol Yarımküre motor yetenekleri sağlıklı beyin13kolayca belirgindir, ancak reklam beyni anormal lateralite sol kortikal atrofi14ile ilişkili sol Yarımküre hakimiyeti başarısızlığın bir sonucu olarak oluşur, 15,16. Bu nedenle, AD patogenezinde ve altta yatan mekanizmalarda beyin lateralizasyonu olası bir değişiklik anlayışı, AD patogenezine yeni Öngörüler verebilir ve tedavi için potansiyel biyomarkerlerin tanımlanmasına yol açabilir.

Elektrofizyolojik ölçüm, hayvanların nöronal faaliyetlerinde yapılan değişikliklerin değerlendirilmesi için hassas ve etkili bir yöntemdir. Yaşlılar (Harold)17 hemherik asimetri azaltılması eşzamanlı interhemferik transfer süresi ile elektrofizyolojik araştırma tarafından belgelenmiş, hangi seslendirildi sunulan zayıf veya hemherik asimetri yokluğunda gösterir Yaşlı18konuşma uyaranlara. Uygulama/ps1 kullanarak, en yaygın olarak kullanılan reklam fare modellerinden biri19,20,21,22, In vivo bilateral hücre dışı kayıt LFPS ile birlikte sol ve sağ m2, biz AD ‘da olası lateralite açıkları değerlendirildi. Buna ek olarak, basit parametre ayarları ile, veri analiz yazılımının yerleşik işlevi (bkz. malzemeler tablosu), elektrik sinyallerinin eşitlemesini matematiksel olarak daha hızlı ve daha basit bir şekilde analiz etmenizi sağlar in vivo Elektrofizyoloji ile başlayanlar için dostu karmaşık programlama dili.

Protocol

Tüm hayvanlar eşleştirilmiş-standart koşullar altında (12 saat ışık/karanlık, sabit sıcaklık ortamı, gıda ve suya ücretsiz erişim) Çin bilim ve Teknoloji Bakanlığı laboratuar hayvanları kuralları ve deneyler onaylı göre barındırıldı Guangzhou Üniversitesi Yerel Etik Komitesi tarafından. Bu bir yaşam dışı prosedür. Not: temsilci sonuçlarında gösterilen veriler Için, 3-5 ayda APP/PS1 (B6C3-TG (APPswe, PSEN1dE9) 85Dbo/J) çift transjenik fareler ve littermat…

Representative Results

Erken AD patolojisinin Yarımküre lateralizasyonun kapasitesini bozup olup olmadığını görmek için, sol ve sağ m2 APP/PS1 fareler ve WT kontrolleri (3-5 yaş arası) ve bu sol ve çapraz korelasyon analiz bilateral ekstrselüler LFP kayıtları yapıldı sağ LFPs. WT farelerinde, sonuçlar, pozitif zaman içinde sol ve sağ LFPs arasındaki ortalama korelasyon negatif zaman gecikmeler önemli ölçüde farklıdır göstermiştir, WT kontrolleri m2 alanlarda hemferik asimillerin varlığını ima (<strong class="x…

Discussion

Burada, ikili-bölge LFP sinyallerinin senkronizasyonunu analiz etme ve beyin yarımküresi lateralizasyonunu tahmin etmek için hem esnek hem de kolay olan In vivo bilateral dışı kayıt prosedürünü rapor ediyoruz. iki beyin alanlarının sinir faaliyetleri arasında bağlantı, yönlülük veya bağlantı. Bu yaygın olarak sadece grup-nöronal faaliyetleri ortaya çıkarmak için kullanılabilir, aynı zamanda bazı temel özellikleri Bölgelerarası Elektrofizyoloji, özellikle tarama osilasyon faaliyet…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

Bu çalışma Çin Ulusal Doğal Bilim Vakfı (31771219, 31871170), bilim ve Guangdong (2013KJCX0054) teknoloji bölümü ve Guangdong Eyaleti doğal Bilim Vakfı (2014A030313418, tarafından hibe tarafından desteklenmektedir 2014A030313440).

Materials

AC/DC Differential Amplifier A-M Systems Model 3000
Analog Digital converter Cambridge Electronic Design Ltd. Micro1401
Glass borosilicate micropipettes Nanjing spring teaching experimental equipment company 161230 Outer diameter: 1.0mm
Microelectrode puller Narishige PC-10
NaCl Guangzhou Chemical Reagent Factory 7647-14-5
Pin microelectrode holder World Precision Instruments, INC. MEH3SW10
Spike2  Cambridge Electronic Design Ltd.
Stereomicroscope Zeiss 435064-9020-000
Stereotaxic apparatus  RWD Life Science 68045
Urethane Sigma-Aldrich 94300

Referanslar

  1. Goedert, M., Spillantini, M. G. A century of Alzheimer’s disease. Science. 314 (5800), 777-781 (2006).
  2. Perrin, R. J., Fagan, A. M., Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 461 (7266), 916-922 (2009).
  3. Cummings, B. J., Pike, C. J., Shankle, R., Cotman, C. W. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiology of aging. 17 (6), 921-933 (1996).
  4. Gordon, M. N., et al. Correlation between cognitive deficits and Abeta deposits in transgenic APP+PS1 mice. Neurobiology of aging. 22 (3), 377-385 (2001).
  5. Fitzpatrick, A. W. P., et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 547 (7662), 185-190 (2017).
  6. Shankar, G. M., et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature medicine. 14 (8), 837-842 (2008).
  7. Buchman, A. S., Bennett, D. A. Loss of motor function in preclinical Alzheimer’s disease. Expert review of neurotherapeutics. 11 (5), 665-676 (2011).
  8. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral cortex. 1 (1), 103-116 (1991).
  9. Giannakopoulos, P., Hof, P. R., Michel, J. P., Guimon, J., Bouras, C. Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain research. Brain research reviews. 25 (2), 217-245 (1997).
  10. Renteria, M. E. Cerebral asymmetry: a quantitative, multifactorial, and plastic brain phenotype. Twin research and human genetics : the official journal of the International Society for Twin Studies. 15 (3), 401-413 (2012).
  11. Derflinger, S., et al. Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized. Journal of Alzheimer’s disease : JAD. 25 (2), 347-357 (2011).
  12. Abdul Manan, H., Yusoff, A. N., Franz, E. A., Sarah Mukari, S. Z. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task. ISRN neurology. 2013, 892072 (2013).
  13. Kim, S. G., et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 261 (5121), 615-617 (1993).
  14. Bartolomeo, P., D’Erme, P., Perri, R., Gainotti, G. Perception and action in hemispatial neglect. Neuropsychologia. 36 (3), 227-237 (1998).
  15. Bartolomeo, P., et al. Right-side neglect in Alzheimer’s disease. Neurology. 51 (4), 1207-1209 (1998).
  16. Thompson, P. M., et al. Tracking Alzheimer’s disease. Annals of the New York Academy of Sciences. 1097, 183-214 (2007).
  17. Cabeza, R., Anderson, N. D., Locantore, J. K., McIntosh, A. R. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage. 17 (3), 1394-1402 (2002).
  18. Bellis, T. J., Nicol, T., Kraus, N. Aging affects hemispheric asymmetry in the neural representation of speech sounds. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 (2), 791-797 (2000).
  19. Jankowsky, J. L., et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular engineering. 17 (6), 157-165 (2001).
  20. Venegas, C., et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 552 (7685), 355-361 (2017).
  21. Busche, M. A., et al. Tau impairs neural circuits, dominating amyloid-beta effects, in Alzheimer models in vivo. Nat Neurosci. 22 (1), 57-64 (2019).
  22. Velazquez, R., et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Molecular Psychiatry. , (2019).
  23. Huo, Q., et al. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cerebral Cortex. 27 (8), 4060-4072 (2017).
  24. Palop, J. J., et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 55 (5), 697-711 (2007).
  25. Ang, G., et al. Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Translational Psychiatry. 8 (1), 154 (2018).
  26. Funk, C. M., Honjoh, S., Rodriguez, A. V., Cirelli, C., Tononi, G. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Current Biology. 26 (3), 396-403 (2016).
  27. Gregoriou, G. G., Gotts, S. J., Zhou, H., Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 324 (5931), 1207-1210 (2009).
  28. Zheng, C., Bieri, K. W., Hsiao, Y. T., Colgin, L. L. Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus. Neuron. 89 (2), 398-408 (2016).
  29. Freeman, W. J., Holmes, M. D., West, G. A., Vanhatalo, S. Fine spatiotemporal structure of phase in human intracranial EEG. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 117 (6), 1228-1243 (2006).
  30. Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron. 88 (1), 220-235 (2015).
  31. Cardin, J. A., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 (7247), 663-667 (2009).
  32. Verret, L., et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 149 (3), 708-721 (2012).
  33. Ahlbeck, J., Song, L., Chini, M., Bitzenhofer, S. H., Hanganu-Opatz, I. L. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse. Elife. 7, (2018).
  34. Spellman, T., et al. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 522 (7556), 309-314 (2015).
  35. Vandecasteele, M., et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 111 (37), 13535-13540 (2014).
  36. Seidenbecher, T., Laxmi, T. R., Stork, O., Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 301 (5634), 846-850 (2003).
  37. Zitnik, G. A., Curtis, A. L., Wood, S. K., Arner, J., Valentino, R. J. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 41 (5), 1376-1385 (2015).
  38. Rogers, L. J., Zucca, P., Vallortigara, G. Advantages of having a lateralized brain. Proceedings. Biological sciences / The Royal Society. 271, 420-422 (2004).
  39. Vallortigara, G. The evolutionary psychology of left and right: costs and benefits of lateralization. Developmental psychobiology. 48 (6), 418-427 (2006).
  40. MacNeilage, P. F., Rogers, L. J., Vallortigara, G. Origins of the left, right brain. Scientific American. 301 (1), 60-67 (2009).
  41. Habas, P. A., et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral cortex. 22 (1), 13-25 (2012).
  42. Dennis, N. A., Kim, H., Cabeza, R. Effects of aging on true and false memory formation: an fMRI study. Neuropsychologia. 45 (14), 3157-3166 (2007).
  43. Cabeza, R., et al. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral cortex. 14 (4), 364-375 (2004).
  44. Cherbuin, N., Reglade-Meslin, C., Kumar, R., Sachdev, P., Anstey, K. J. Mild Cognitive Disorders are Associated with Different Patterns of Brain asymmetry than Normal Aging: The PATH through Life Study. Frontiers in psychiatry / Frontiers Research Foundation. 1, 11 (2010).
  45. Jankowsky, J. L., et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human molecular genetics. 13 (2), 159-170 (2004).
  46. Radde, R., et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO reports. 7 (9), 940-946 (2006).
  47. Lacor, P. N., et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 (4), 796-807 (2007).

Play Video

Bu Makaleden Alıntı Yapın
Chen, Y., Li, M., Zheng, Y., Yang, L. Evaluation of Hemisphere Lateralization with Bilateral Local Field Potential Recording in Secondary Motor Cortex of Mice. J. Vis. Exp. (149), e59310, doi:10.3791/59310 (2019).

View Video