Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Mechanical Engineering

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

Redes de tuberías y pérdidas de presión

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

Redes de tuberías se encuentran comúnmente en sistemas diseñados y naturales puesto que pueden eficientemente transporte, hacer circular y distribuir fluidos. El agua que sale del grifo en su casa viaja a través de un sistema de abastecimiento de agua del complejo de la ciudad que es un excelente ejemplo de una red de tubería diseñada. Como fluido circula a través de una red de tuberías, se encuentra con resistencia a la fricción de las paredes del canal y conexiones y el flujo de fluido pierde presión y supera estas resistencias de flujo. Caracterizar y entender estas pérdidas de presión es necesario para especificar los componentes correctos y los tamaños en un diseño nuevo o para diagnosticar problemas en un sistema existente. En este video, vamos a ilustrar un enfoque simple para medir la caída de presión dentro de una red de tuberías y discutir algunos modelos estándar para predecir pérdidas y unas geometrías comunes. Luego, estos métodos se emplearán para medir experimentalmente las pérdidas de presión por comparación con los modelos. Por último, analizaremos algunas otras aplicaciones de redes de tuberías y pérdidas de presión.

Cualquier momento que un fluido fluye a través de un canal cerrado, encuentra cierta resistencia a la fricción de las paredes del canal. Como consecuencia, una fracción de la energía mecánica del fluido se convierte en calor, resultando en una pérdida continua de la presión en la dirección del flujo. Esta pérdida de presión puede caracterizarse en un sistema dado por la medición de la presión del fluido en puntos discretos a lo largo del canal que se hace a menudo usando dispositivos de nivel de líquidos simples llamados manómetros. Un manómetro es una sección abierta vertical o inclinada del tubo conectado al canal de tubería que parcialmente llena de líquido. La altura de la columna líquida es directamente proporcional al nivel del líquido en ese punto a lo largo del canal. Por lo tanto, se puede determinar la diferencia de presión entre dos puntos o Delta P del cambio en altura de líquido o Delta H entre dos manómetros. Lamentablemente, no siempre es práctico hacer mediciones directas y a menudo deben predecir las pérdidas de presión antes de que se construye un sistema para asegurar las tasas de flujo de fluidos adecuada. En estas situaciones, la fórmula del Factor de fricción de Darcy puede utilizarse para predecir la pérdida de presión por fricción. En esta ecuación, Delta P es la pérdida de presión sobre una longitud L de un canal con una sección circular y diámetro interior D, fila es la densidad del fluido y U es la velocidad de flujo promedio, definida como la tasa de flujo de volumen dividida por el área transversal del cha nnel, f es el Factor de fricción de Darcy que sigue diferentes empíricamente y las tendencias derivadas teóricamente basadas en la geometría de canal y número de Reynolds. Consulte el texto de los modelos utilizados para canales rectos circulares y bobinas helicoidales. Las diferentes secciones de canal en una red de tuberías están conectadas por discretos accesorios tales como válvulas, expansores y curvas que también contribuyen a la pérdida de presión. Las pérdidas de presión a través de estas conexiones se conocen como pérdidas menores y a veces son registradas en términos de la longitud equivalente de un canal recto, necesaria para producir la misma caída de presión. Estas pérdidas aún están modeladas con la fórmula de Factor de fricción de Darcy con el factor de fricción y fluyen el valor tabulado de longitud equivalente escalado por el diámetro interno para la conexión y velocidad de los canales de conexión. Las pérdidas totales del sistema de tuberías son simplemente la suma de todas las pérdidas de secciones individuales y accesorios. En la siguiente sección, medimos estas pérdidas en configuraciones diferentes tubos representativas para determinar los factores de fricción y longitudes equivalentes.

Antes de comenzar la instalación, asegúrese de que tienen un área clara al trabajo y a una superficie plana sobre la que montar los componentes. Coloque el depósito de agua a la superficie y si es necesario, taladre los agujeros para la entrada de agua y salida así como el cable de alimentación de la bomba. Montar la bomba sumergible en el depósito. Ahora coloque una pequeña viga vertical o L soporte cerca del embalse. Monte el medidor de flujo del rotámetro verticalmente en la viga y utiliza un trozo de tubo para conectar la salida de la bomba a la entrada del rotámetro. El rotámetro es un instrumento que indica la tasa de flujo volumétrico de un fluido basado en el nivel flotante de una pequeña cantidad. Construir las secciones de prueba de tres tubos como se describe en el texto. Cuando haya terminado, debe tener una sección recta, una sección en espiral y una sección con múltiples curvas de codo. Registrar cuidadosamente la longitud de las secciones rectas, así como el radio de la bobina del tubo medido desde el eje central de la bobina hasta el punto medio del tubo. Monte las tres secciones a la superficie con abrazaderas. Ajuste las conexiones T en los extremos para que las salidas laterales ramificadas apuntan hacia arriba y luego instalación tubos ranurados claro en estos puertos para formar los manómetros. Utilice un nivel para asegurar que los tubos de manómetro vertical. Por último, conectar una sección del tubo a la salida del rotámetro y colocar un segundo tubo que regresar al depósito. Estos dos tubos se conectan a las entradas y salidas de las secciones de prueba para formar un círculo completo durante el experimento. Llene el depósito con agua y la preparación es completa.

Conecte el tubo de la salida del rotámetro a un extremo de la sección recta de la prueba y conecte el tubo de retorno al otro extremo. Ahora encienda la bomba y ajuste la válvula del rotámetro para maximizar la velocidad de flujo. Una vez que todo el aire es forzado a salir del bucle de la pipa, apague la bomba. Puede que necesite añadir agua al depósito una vez se llena el circuito de flujo. Una vez que todo el aire es forzado a salir del bucle de la pipa, apague la bomba y comparar la altura del agua en los dos manómetros, midiendo desde la parte superior de la guarnición de T. Si las dos alturas son diferentes, use cuñas para nivelar la superficie de prueba hasta las alturas de medición son los mismos. Vuelva a encender la bomba y después de esperar un momento para el flujo, a registrar el caudal y el nivel vertical del agua en ambos tubos de manómetro. Ajustar la válvula del rotámetro para restringir el flujo un poco y grabar los nuevos niveles de tasa y manómetro de flujo. Repita este procedimiento para recolectar datos a velocidades de flujo de seis o siete de la sección recta de la prueba. Cuando termines, repite el experimento con las otras dos secciones de la prueba incluyendo un reajuste de la superficie de prueba para cada sección nueva si es necesario.

En primer lugar, mirar los datos de la sección recta de la prueba. A cada velocidad de flujo, tienes las medidas de la altura de agua en cada manómetro. Usar la diferencia de alturas de manómetro para determinar la caída de presión total en la sección de prueba. Luego, determine la velocidad promedio del flujo en el tubo dividiendo el caudal medido desde el rotámetro por el área transversal del tubo. A continuación, calcular el número de Reynolds para el flujo en este caudal. Combinar los resultados con la fórmula del Factor de fricción de Darcy y sus medidas de la sección de prueba para resolver para el factor de fricción. Para tramo recto de longitud 284 mm y diámetro interno de 6,4 milímetros, los caudales medidos de tres cuartos a dos litros por minuto corresponden a condiciones turbulentas. Propagar la incertidumbre para determinar la incertidumbre total en el número de Reynolds y el factor de fricción como se describe en el texto y luego trazar el resultado junto con la predicción del modelo para una sección recta. Dentro de la incertidumbre experimental, los factores de fricción emparejar la predicción del modelo. La incertidumbre relativamente alta en el factor de fricción a velocidades de flujo bajo es debido a la limitada precisión del medidor de flujo. Ahora mire sus datos para la sección de prueba en espiral. Como antes, determinar el número de Reynolds en cada flujo, caída de presión total y la velocidad de flujo promedio. La caída de presión total en esta sección es la suma de la caída de la parte recta y la porción en espiral así que utilizar la fórmula del Factor de fricción de Darcy y el modelo de canal recto para estimar la contribución de la sección recta y esto restar del total . Utilizar la gota de presión restante y la medición del radio de la bobina para determinar el factor de fricción en la porción en espiral. Propagar las incertidumbres para el factor de número y de la fricción de Reynolds una vez más, asumiendo despreciable incertidumbre de la corrección de la sección recta. Representar estos resultados junto con la predicción del modelo para una sección en espiral. El número de Reynolds es entre 1.700 y 5.200 que corresponde al decano números entre 500 y 1.600 con el radio de la bobina y diámetro de tubo dado. Estos valores están dentro de la porción Laminar de la fórmula de factor de fricción de la bobina. Estos miden factores de fricción también combate el modelo dentro de la incertidumbre experimental y para un caudal dado son significativamente mayores que las que se encuentran en la sección recta. Esto aumenta debido al efecto estabilizador de la geometría del tubo en espiral que retrasa la transición al flujo turbulento a números de Reynolds más altos, aproximadamente 9.900 para esta geometría. Ahora mira los datos de la tercera sección de la prueba. Una vez más, determinar el número de Reynolds en cada flujo, caída de presión total y la velocidad de flujo promedio. La caída de presión total en esta sección es debido a la suma de las secciones rectas y las pérdidas menores de cada uno de los codos de N. Utilizan la fórmula de Factor de fricción de Darcy y el modelo de canal recto otra vez a calcular y restar la contribución de las secciones rectas. La pérdida de presión restante es debido a las conexiones de codo de N en la sección de prueba. Utilice esta caída de presión con el diámetro de las secciones rectas y factor de fricción para calcular la longitud equivalente para un codo individuales. Propagación de incertidumbres para el número de Reynolds y la longitud equivalente y trazar los resultados. Como el aumento del número de Reynolds, el cociente de la longitud equivalente al diámetro de la tubería interna acerca a 30 como era de esperarse el valores tabulate. Tenga en cuenta que la resistencia friccional real es específica de la geometría de conexión y así estos tabulan valores sólo puede considerarse pautas.

Ahora que estás más familiarizado con redes de tuberías y pérdidas de presión, vamos a ver algunas aplicaciones del mundo real de estos conceptos. Intercambiadores de calor consisten en típicamente dos redes de tubería separados que traen líquidos fríos y calientes en contacto térmico sin permitirles que se mezclan. Análisis de caída de presión deben realizarse cuando diseño intercambiadores de calor para asegurar que las bombas pueden proporcionar suficiente líquido caudales y lograr la deseada tasa de transferencia de calor. La acumulación de placa en las arterias reduce el diámetro eficaz para el flujo de sangre. Como resultado, el corazón tiene que trabajar más duro para compensar la pérdida de presión adicional. En casos extremos, la acumulación aumenta el riesgo de una obstrucción total de la arteria o insuficiencia cardíaca. Durante un procedimiento de angioplastia, stent se inserta para volver a expandir la arteria y restablecer el flujo sanguíneo normal.

Sólo ha visto la introducción de Zeus a las redes de tuberías y pérdidas de presión. Ahora debería entender cómo determinar las pérdidas de presión en una red de tuberías utilizando la fórmula de Factor de fricción de Darcy incluyendo las pérdidas menores ocasionadas por accesorios discretos. Por último, hemos visto como determinar experimentalmente la pérdida de presión a través de un canal mediante manómetro de tubos. Gracias por ver.

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter