Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Mechanical Engineering

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

鈍頭物体まわりの流れの可視化

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

その準拠法の非線形性質のため流体運動は、複雑なフロー パターンを誘導します。これらのフロー パターンある物体など障害物まわりの流れ、多くの要因によって影響を受けています。物体は、その形状のためは原因が流れをその表面の大部分に分かれてオブジェクトです。フロー条件によってこの流れが不安定に振動渦と呼ばれるきっかけにフロー パターンに上昇を与えるなります。流れの剥離の基礎を紹介し、鈍頭物体による渦放出し結果のフロー パターンを視覚化するために使用法を示します。

まず、速度 U 無限円柱に接近速度と呼ばれる、水の制服の着実な流れを考えてみましょう。オブジェクトの面上の境界層剥離はきっかけに最終的にデタッチ体の周りの渦の形成に します。定期的な剥離が行われるとき、渦はボディの後ろの低圧の交互の項目を生成します。このプロセス通り・ フォン ・ カルマン渦と呼びます。この繰り返しパターンは、特定の粘性力への慣性力の比として定義される無次元レイノルズ数の範囲で発生します。ここでは、nu は流体の動粘度 V はこの場合、特徴的な速度または U 無限大、D は円柱の直径。たとえば、レイノルズ数は、5 名程度、次のデモンストレーションでセットアップで、流れがシリンダーの後ろに 2 つの安定した回転渦を展示します。レイノルズ数が増加するにつれて、これらの渦は流れの方向に細長い。いつ、レイノルズ数に達すると約 37、きっかけは不安定になり、圧力と運動量間の不均衡の結果として正弦波発振します。シリンダーを渦周波数は一定ではない、むしろそれはレイノルズ数の値によって異なります。この脱落頻度は、もう一つの無次元パラメーターであるストローハル数が特徴です。F が渦の取除く頻度ストローハル数として定義されますが表示されます。流れ場の実験的解析は、流線の 4 種類を使用します。Path 行は、指定された流体粒子に続く流れに移動するパスです。ストリーク ラインは、同じ場所に由来する動きがすべての流体粒子の連続軌跡です。流線型は、瞬時には、架空の線とローカル速度場に接するです。パス線、連続線と流線が定常流条件下での相互一致する注意してください。現在のフロー、これは鈍頭物体からまたはそのきっかけの影響から十分にずっと上流の流れの地域に対応します。その一方で、パス線、連続線と流線は非定常流れの条件の下で互いと異なります。現在のフローにこれは鈍頭物体の後流に基本的に対応します。最後に、タイムラインは時間で、同時に流インスタントにリリースされた流体粒子の連続軌跡です。次の実験では、タイムラインと縞の線を使用してフロー パターンを分析するのに小さな水素気泡の連続シートを使用します。今、流れの実験を設定する方法を見てみましょう。

まず、電気図によると装置を組み立てます。テスト セクションの下流端水の肯定的な電極を修正します。次に、否定的な電極を上流修正します。これはポイントの流れは、研究の目的を到達する前に、泡をリリースしストリームに近くなります。フロー機能をオンにします。1 秒あたり約 0.04 メートルの平均速度を確立するために、周波数コント ローラーのダイヤルを 2 つの位置に設定します。この速度は、1 秒あたりマイナス 5 乗メートルに約 50 の流量に対応します。今 DC 電源をオンにし、現在約 190 ミリ アンペアの電流で約 25 v に電圧を高めます。信号発生器の出力を高い位置に回路を閉じ、低い位置で開きます 5 ボルト正方形信号に 0 ボルトの矩形波に設定します。DC 5 ボルト回路が常に閉じられ、システムは連続的に気泡を生成しますので、オフセットを最大化します。タイムラインを生成するには、信号発生器の DC オフセットを 1 ボルトに変更します。方形波の周波数を 10 ヘルツに設定します。タイムラインは、フローで生成されます。タイムラインの間のスペースを高めるために、マイナス 2 に矩形波の対称性を設定します。

最初 SI 単位のキャリパーを使用してロッドの直径を測定します。否定的な電極の下流の円筒棒を修正します。光が直接イメージング システムの飽和を防ぐためにビューの行の後ろには必ず水素気泡の層に高輝度の光をキャストします。円形の先端だけがカメラの前に表示されるように、ロッドと可視化システムを合わせます。可視化] ウィンドウで、下流のマーク渦をカウントするための参照ポイントとして使用するロッドの流すサイクルを追加します。

まず気泡シートの棒の影の幅を測定します。距離と歪みを回避するロッドで測定右を取る。ロッド径を使用して、マシン単位から現実世界の単位への換算係数を決定します。次に、鈍頭物体からほぼ歪みのないタイムラインのグループとその後流の影響を選択します。マシン単位で最初と最後のタイムラインの間の距離 L を測定します。グループ内のタイムラインの数をカウントし、方形波の周波数に注意してください。次の式から接近流速を決定します。今、水の動粘度を使用してレイノルズ数を計算します。次に、ロッドの後流に渦を観測によるストローハル数を決定します。渦移動無料ストリーム内のタイムラインと比較して速度が異なることに注意してください。固定文字列を参照として使用して、渦サイクル、NS、時間の定義された期間中に交差する参照点の数を数えます。流す頻度を計算します。ストローハル数の計算結果を使用しています。

今では手順と分析を行っている、結果を見てをみましょう。ストローハル数とレイノルズ数の関係を使用して、結果の妥当性を確認できます。St * および m の係数は、レイノルズ数に依存し、文献で見つけることができます。この例ではレイノルズ数は 115 です。したがって、St * と m の値はストローハル数の計算に使用できます。ストローハル数の計算値は 0.172 0.169 の実測値によく相関します。この実験運用パラメーターを変えることで、レイノルズとストローハル数の計算は 2 つの数値の間の数学的関係によく相関。これは、バブル メソッドを使用して、鈍頭物体周りの流れのパターンを理解する方法もを示します。

フロー パターンを理解することは、デザインとエンジニア リング アプリケーションの多くの種類の操作に不可欠です。橋とオフショア石油リグの柱は、過去の構造現在の流れによって引き起こされる乱れに耐えるように設計されています。渦構造が公開される周波数を知ることは、その設計のため不可欠です。その点では、エンジニアはようでそれがこれが必然的に構造体の壊滅的な障害につながる可能性ため渦周波数と共鳴構造の固有振動数があることを確認しなければなりません。また空気箔など合理化物体周り流れを勉強したり、船体の船が欠かせません。流線を利用することにより、エンジニアは、航空機は失速する時、あるいは角度などのパラメーター推定流速に基づく揚力特性を決定できます。

鈍頭物体まわりの流線の視覚化のゼウスのビデオを見てきただけ。今流動挙動を研究する方法これらのフロー パターンを可視化する実験をセットアップする方法と、フォン ・ カルマン渦流動パターンの基本を理解する必要があります。見ていただきありがとうございます。

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter