Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Inorganic Chemistry

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

分子軌道 (MO) 理論

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

分子軌道理論は、メイン グループ及び遷移金属錯体における電子の挙動を記述するための柔軟なモデルです。

モデルのいくつかの種類の化学結合と電子の挙動を表すことができます。シンプルなモデルは、ルイスの点の構造、VSEPR 理論など分子反応を理解するための良い出発点を提供する、彼らが適用にならない電子動作に関する広範な仮定を含みます。

MO 理論は、ジオメトリと指定された原子のまわりの軌道の相対的なエネルギーをモデル化します。したがって、この理論は単純な二原子分子と大規模な遷移金属錯体との互換性です。

このビデオが MO 理論の基本原則を論議、合成と 2 つの遷移金属錯体の形状を決定するための手順を示すし、MO 理論化学のいくつかのアプリケーションをご紹介します。

MO 理論の対称性と同様のエネルギーが一致する 2 つの原子軌道は低エネルギー結合の分子軌道とエネルギーの高いantibonding分子軌道になります。図における分子軌道の数原子軌道の数と等しく必要があります。

原子軌道と結果接合方軌道間のエネルギーの差は、軌道重複の簡単な図表から近似です。正面の相互作用が一般的にサイドのオーバー ラップより強いです。

モーメント図は、グループ理論モデル遷移金属錯体を使用します。リガンド原子軌道の線形結合の対称性の適応、または短い SALC、金属の原子軌道と対話することができます表されます。

SALCs は、分子の点グループを決定する、原子軌道リガンドの簡約表現を作成し、軌道の対称性に対応する既約表現を見つけることによって生成されます。

MOs は、SALCs と対称性が一致する原子軌道間に形成されています。SALC 対称性に一致しない原子の軌道には、開始の原子軌道と同じエネルギーでnonbonding軌道がなります。

モーメント図は、電子に格納されます、フロンティア軌道一般的にd軌道の文字です。これらの軌道とd 軌道分裂図として別にみなされ、金属センターにd電子の数が常に表示されます。

MO 理論の原理を理解すると、今では、2 つの金属錯体の合成と分子軌道理論を使用してのジオメトリを予測の手順を行ってみましょう。

手順を開始するには、Schlenk ライン口を閉じて、N2ガス、真空システムを開きます。動的真空に達すると、ドライアイスとアセトンの混合物真空トラップのクールな。

次に、攪拌棒 250 mL 三首丸底フラスコに 550 mg dppf、イソプロパノールの 40 mL を配置します。しっかりとホット プレートをシュレンク管ヒューム フードのフラスコをクランプします。フラスコのセンター ネックを還流凝縮器及び真空アダプターに合います。ガラス ストッパー ゴムキャップと残りの首に合います。

攪拌しながら、下でドガの 15 分間ソリューションを通じてバブル N2ガスによるソリューション。真空アダプターは通気口として開いたままにしておきます。

ソリューションを脱されている、一度新しい窒素ラインを開き、真空アダプターに接続します。フラスコを水浴に下ろします。コンデンサーに水ホースを接続、攪拌モーターをオンに、液を攪拌しながら 90 ° C までお風呂を加熱を開始します。

Dppf ソリューションを加熱中、25 mL の丸底フラスコに NiCl2•6H2O の 237 mg と 2:1 混合試薬グレード イソプロパノール、メタノール 4 mL を配置します。

ニッケル塩が完全に溶解するまで混合物を超音波照射します。ゴムキャップでフラスコをストッパーし、発煙のフード フラスコを確実にクランプします。

ドガの Ni ソリューション ソリューションを通じてバブル N2ガスによる 5 分間。その後、dppf ソリューションに Ni 前駆体を追加するのにカニューレ転送を使用します。

N2ガス下 90 ° C で 2 時間混合物を還流します。氷浴で反応混合物を冷却します。

メディアの種類の釉薬に真空濾過により緑沈殿物の結果を収集します。10 mL の冷ヘキサン 10 mL に続いて、冷たいイソプロパノールで沈殿を洗います。

バイアルに空気乾燥 CDCl3で1H NMR スペクトルを取得し製品を許可します。

手順を開始するには、シュレンク管と前述したように真空トラップを準備します。バブル N2ガス溶媒によってトルエン 20 mL をドガ丸底フラスコ 125 mL を使用する。その後、200 mL Schlenk フラスコ dppf 550 mg と Pd(PhCN)2Cl2 383 mg を配置します。

攪拌棒とガラス栓フラスコを装備します。避難し、3 回 N2を使用してシステムを削除します。N2を光らせて、ガラス栓をゴムキャップに置き換えます。

カニューレの転送を使用して、反応を脱トルエンを追加します。反応混合物を室温で 12 時間の攪拌します。

真空濾過により、釉薬のオレンジ色沈殿物の結果を収集します。冷ヘキサンの 10 mL に続いて、冷たいトルエン 10 mL で沈殿を洗います。

周囲条件で風乾することにより。CDCl3製品の1H-NMR スペクトルを取得します。

複雑な Ni の1H-NMR スペクトルは 0 ppm、常磁性種であることを示唆している以下の 2 つのピークが続く 21 ppm の濃度でピークを示しています。複雑な Pd などのピークが表示されません。複合体はd8両、ことを考える可能性が高いさまざまな電子状態は金属センターで異なるジオメトリから結果します。

4 位複合体パターンを分割どちらの四面体または正方形平面d軌道と近似しています。4 座標図の 8 個の電子が配置されると、四面体構成に 2 つの不対電子は、正方形の平面構成は、不対電子を持たない中。これは、Pd 錯体の平面を示します。

複雑な Ni 中の不対電子の数を決定する、ボリューム重水素クロロホルムと trifluorotoluene の混合物で、50 分の 1 の製品の 10 ~ 15 mg とエバンスのメソッドのサンプルを準備します。

NMR チューブに重水素化 50: 1 クロロホルムと trifluorotoluene の毛細血管を配置します。19F NMR スペクトルを取得し、trifluorotoluene の化学シフトの変更に伴う磁気モーメントを計算します。

観測磁気モーメントは 3.39 μBの報告値に近い。いくつかの軌道の貢献はd8四面体錯体の予測は、観測された磁気モーメントはスピンのみの値よりも高くなる予定です。観測値は、四面体の複雑な 2 つの不対電子と一致してします。

MO 理論は無機化学で広く使用されます。いくつかの例を見てみましょう。

計算化学特性と分子の反応性を予測する統計的モデリングに適用されます。半経験的両方第一原理計算手法はさまざまな範囲にその計算に MO 理論を組み込む。出力が多い軌道エネルギーの形態と各分子軌道の 3 D モデルです。

配位子場理論は、結晶場理論・ ダイアグラムは、モデルの他の側面との分割d軌道を調整する MO 理論を組み合わせた詳細な分子モデルです。

結晶場理論、金属センターで縮退は、配位子と金属センター プロパティによって様々 な程度に影響を受けます。複合体の安定性は、結晶場安定エネルギー、設定低いと高いエネルギーの軌道電子の安定化と不安定化の効果を比較すると推定されます。

配位子場の理論は、金属中心と配位子の軌道重複の性質を調べることによって軌道分裂にもっと洞察力を提供できます。軌道重複の対称性は、安定化と軌道の人口の効果が不安定になると見なされます。これはスピン状態、金属-リガンド相互作用の強さとその他の重要な分子の特性を予測するた

ゼウスの MO 理論入門を見てきただけ。今 MO 理論、 dから複雑なジオメトリを決定する手順の基本原則を理解する必要があります-軌道図、および化学に MO 理論を適用する方法のいくつかの例を分割します。見てくれてありがとう!

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter