Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Aeronautical Engineering

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

Schlieren Imaging: Una técnica para visualizar características de flujo supersónico

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

Los aviones militares vuelan a velocidades increíbles que superan la velocidad del sonido, llamadas velocidades supersónicas. Al describir las velocidades supersónicas, utilizamos el número Mach para medir esa velocidad en relación con la velocidad del sonido. Con un número Mach mayor que 0,8, pero menor que 1,2, la velocidad es transónica. Por encima de Mach 1.2, la velocidad es supersónica.

Echemos un vistazo más de cerca a lo que está sucediendo a estas altas velocidades mediante el análisis del flujo de aire alrededor de un cuerpo en forma de cono. Por encima de un número Mach de 0,3, se deben tener en cuenta los efectos de compresibilidad del aire, porque a estas altas velocidades el aire tiene cambios significativos en la densidad. Cuando la velocidad de flujo entrante está por encima de Mach 1.0, se forma una onda de choque oblicua desde la nariz del cono o cuña, y los ventiladores de expansión se forman alrededor del cuerpo en movimiento.

Una onda de choque es una perturbación de propagación extremadamente delgada, donde se producen cambios bruscos en las propiedades del flujo, como la presión, la temperatura y la densidad. Un ventilador de expansión consiste en un número infinito de ondas y se produce cuando el flujo supersónico gira alrededor de una esquina convexa. La presión, la densidad y la temperatura disminuyen continuamente a través del ventilador de expansión, mientras que la velocidad aumenta. Dado que la densidad del aire cambia significativamente dentro de los ventiladores de onda de choque y expansión, se pueden visualizar utilizando una técnica de visualización de flujo basada en densidad, llamada Schlieren Imaging.

El método Schlieren se basa en el índice de refracción, que es la relación de la velocidad de la luz en un vacío, a su velocidad dentro de un medio específico. El cambio en el índice de refracción es proporcional al cambio en la densidad. Por lo tanto, a medida que la densidad del aire cambia en la onda de choque y el ventilador de expansión, también lo hace el índice de refracción.

En Schlieren Imaging, una fuente de luz colimada brilla en el cuerpo y la variación en el índice de refracción distorsiona el haz de luz. Para visualizar la desviación, se coloca un filo de cuchillo en el plano focal de la luz transmitida, bloqueando así parte de la luz desviada y mejorando el contraste de la imagen proyectada en la pantalla. Esto da como resultado una imagen de alta y baja intensidad lumínica, que mapea las áreas de alta y baja densidad de aire, lo que nos permite visualizar las ondas de choque y los ventiladores de expansión.

En este experimento, demostraremos el uso de un sistema Schlieren Imaging para visualizar las ondas de choque y los ventiladores de expansión formados por el flujo de aire Mach 2 sobre un cono.

Este experimento utiliza un sistema Schlieren para crear imágenes de ondas de choque generadas por un túnel de viento supersónico alrededor de un modelo de cono de medio ángulo de 15o. El sistema Schlieren utilizado en este experimento se configura como se muestra.

Primero, active las torres de la secadora para deshidratar el aire. Esto evitará la formación de hielo debido a las caídas de temperatura locales en la sección de prueba. A continuación, abra la sección de texto y fije el modelo de cono de medio ángulo de 15o a la estructura de soporte en el interior. Compruebe la sección de prueba para asegurarse de que está libre de escombros y cualquier otro objeto. A continuación, cierre la sección de prueba.

Asegúrese de que la válvula principal para el control de flujo de aire esté cerrada, luego encienda el compresor para presurizar el tanque de almacenamiento de aire y deje que el tanque alcance 210 psi. Si el compresor no se apaga automáticamente cuando se alcanza la presión, apague el compresor manualmente. Ahora, encienda el controlador para la válvula de alta velocidad.

Para configurar el sistema Schlieren Imaging, primero encienda la luz y el ventilador de refrigeración. A continuación, coloque un pedazo de papel en el lado opuesto de la sección de prueba de la fuente de luz. Alinee el primer espejo cóncavo para permitir que la luz pase a través de la sección de prueba y compruebe que la luz golpea el papel. A continuación, coloque una pantalla de proyección donde se forma la imagen.

Ahora, ajuste el segundo espejo cóncavo para que la luz que pasa a través de la sección de prueba se refleje en la pantalla de proyección. Ajuste el filo del cuchillo para que esté en el punto focal del segundo espejo. A continuación, ajuste la abertura del filo del cuchillo para lograr la calidad de imagen deseada.

Para grabar la imagen proyectada, configure una cámara en un trípode que esté frente a la pantalla. Para grabar directamente en el sensor de la cámara, coloque la cámara delante de la abertura del borde del cuchillo. Ahora que el aparato está configurado, hagamos el experimento.

En primer lugar, ponerse la protección auditiva adecuada y, a continuación, asegúrese de que nadie esté cerca del escape de aire fuera del edificio. Comience abriendo el suministro de aire al controlador de válvula rápida. A continuación, abra la válvula principal, que deja entrar aire en el sistema. Ahora, apague las luces de la habitación para que la imagen proyectada sea más fácil de ver. A continuación, active el túnel de viento pulsando el botón verde situado junto al controlador, que abre la válvula rápida.

Observe la imagen Schlieren del flujo Mach 2.0 sobre el modelo de cono. Cuando haya terminado, apague el túnel de viento cerrando las válvulas en orden inverso y, a continuación, apague el controlador. Espere hasta que el aparato termine de liberar aire antes de retirar la protección auditiva.

Ahora, echemos un vistazo a la imagen adquirida usando la configuración de Schlieren. El modelo utilizado en este experimento era un cono con un ángulo medio de 15o, y fue sometido a flujo supersónico en Mach 2.0. Podemos observar la presencia de una onda de choque, como se muestra aquí.

Teóricamente, se debe formar un choque oblicuo en la superficie del cono, en un ángulo de 33,9o. El valor del ángulo de choque oblicuo se obtiene de la ecuación Taylor-Maccoll, que debe resolverse numéricamente. El ángulo experimental medido fue de 33,6o, un error porcentual inferior al 1%, en comparación con los datos teóricos.

Además, la técnica Schlieren permite la visualización de ventiladores de expansión sobre el cono. El ventilador de expansión es un proceso de expansión esperado que se produce cuando el flujo supersónico gira alrededor de un ángulo convexo.

En resumen, aprendimos cómo el método Schlieren utiliza cambios en el índice de refracción para visualizar las ondas de choque y los ventiladores de expansión en el flujo supersónico. A continuación, utilizamos la técnica de imagen para visualizar los patrones de onda de choque y expansión en el campo de flujo Mach 2.0 sobre un cono.

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter