Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
General Chemistry

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

理想気体法律

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

理想気体法律は近く周囲条件下で最も一般的なガスの行動を説明するよう科学の基礎的な関係であります。

理想気体法律 PV = nRT、クローズド システムのガスの分子の数と 3 つの測定可能なシステム変数の間の関係を定義します: 圧力、温度と体積。

理想気体法律を第一原理から派生する 2 つの仮定に依存します。まず、ガス分子自身にボリュームが必要ありません。第二に、決して分子相互作用またはエネルギーを交換します。ガス高圧この理想的な行動から逸脱、ガス密度が増してと気体分子の実際のボリュームが重要になります。同様に、ガスは非常に低温で魅力的な分子間相互作用が重要になる逸脱します。重いガス温度と密度が高い、強い分子間相互作用による圧力でも逸脱するかもしれない。

このビデオは気体の温度と圧力の関数としての密度の変化を測定することにより実験的理想気体法律を確認します。

理想気体法律は、4 つの重要なリレーションシップから派生します。まず、ボイルの法則は、圧力と気体の体積と反比例の関係を説明します。次に、ゲイ ・ リュサックの法則では、温度と圧力は比例。同様に、シャルルの法則は、温度と量の間の比例のステートメントです。これらの 3 つの関係は、多くの異なる条件で単一のガスの比較を有効に結合されたガスの法律を形成します。

最後に、Avogadro は分子の同じ数を含む任意の 2 つのガスは、同じボリューム、温度、圧力、開催を決定しました。同じ条件下でのガスは通常同じ動作、するため、各種ガスの比較を有効にするこれらのパラメーターを関連する普遍的なガス定数 (R) と呼ばれる比例定数が見つかりません。R 分子あたり温度ごとにエネルギーの単位を持つたとえば、ジュール毎モル毎ケルビン。

理想気体法律は、ガスのシステムの状態の関係を理解する上で貴重なツールです。たとえば、一定の温度と圧力のシステムより多くのガス分子添加の量の増加の結果します。

同様に、場所 no 分子を追加または減算、閉じたシステムで一定した温度でボリュームが減少するガスの圧力が増加します。

磁気浮上天秤を使用して、システムの物理的性質を測定することにより実験的理想気体法律を確認できます。一定の質量および体積の固体試料の重量は、それのまわりのガスの特性のプローブとして使用できます。

システムは、一定のシステム ボリュームと温度での圧力が増加、システム中の気体分子の量が増加、ガス密度が高まります。このガスで冠水した硬質の固体サンプルは浮力と見かけの重量減少がその質量は変更されません。アルキメデスの原理は、物体重量の変化が転置されるガス量変化に等しいことを示すため、ガス濃度の変化を確認できます。

前述の近似が当てはまる、一般ガス定数、r. の単純な計算を有効にする場合、異なる圧および温度条件下でのガス密度の正確な動作は理想気体法律に対応します

次の一連の実験では、発振が理想気体法律を確認し、温度と圧力の関数としての水素の密度を測定することによって普遍的なガス定数, R を決定する使用されます。まず、慎重にサンプルでは、この場合は、アセトンとの精巧な仕上げのアルミ ブロックをきれいにし乾燥.卒業記入サンプルの体積を測定サンプルをカバーする十分なシリンダー蒸留水します。最初のボリュームに注意してください。水のサンプルの体積変化に注意してください。

削除し、慎重に試料を乾燥してきれい。次に、ここではグローブ ボックス内にある磁気浮上天秤に読み込むこと。サンプルのまわりの圧力-温度チャンバーをインストールします。サンプルの壁のいずれかを触れていないクローズド システムの磁気懸架は今。

サンプル環境を避難し、1 つの棒の圧力の水素ガスを補充します。

サンプル重量を測定し、室温で初期の重量としてラベルを付けます。次に、2 バーにサンプル環境の圧力を高めるし、平衡にそれを許可します。新しい圧力の重量を測定します。室温ですべて対応する圧力、重みのサンプルのシリーズを取得する、圧力の数で数回これらの手順を繰り返します。

次に、高温で圧力の機能として重量を測定します。最初サンプル環境を避難させる温度を 150 ° C に増加し、平衡にそれを許可します。1 つの棒の圧力を増やしてください。サンプル重量を測定し、150 の ° C および 1 つの棒で初期の重量としてラベルを付けます。圧力を高める、平衡、ことができます、重量を測定します。一連の圧力の範囲内で重みのサンプルを測定するためにこの手順を繰り返します。多くのデータを得るには、一連の他の一定の温度と圧力で重量測定を繰り返します。

理想的な気体定数を計算するには、サンプル重量の各温度と圧力の測定値を集計します。

次に、圧力、または Δw の変化の関数として重量の変化のすべての可能な組み合わせを取得する単一温度内で重みのサンプルのすべてのペア間の相違点を計算します。この変更は、サンプルによって転置された水素ガスの重量変化と同等です。

同様に、対応する圧力、または ΔP の変化を得るために圧力の違いを計算します。重量と各温度のための圧力の変更のすべてのペアを集計します。ケルビンとパスカルに圧力の単位の温度の単位を変換します。

理想気体法律を ΔPV として記述できるボリュームと温度測定値の系列ごとに一定であるので ΔnRT を =。Δn は Δw の水素の分子の重量で割った値に等しいため、Δw の値ごとに Δn の各値を計算します。

圧力変化の産物をプロットし、Δn と温度の積の関数としてボリュームをサンプルします。正しく行わ場合一般ガス定数と等しくなります斜面を決定するための線形回帰分析を実行します。

理想気体の方程式は、通常、周囲温度と圧力でガスで実行する多くの現実世界のシナリオで使用されます。すべてのガスは高圧で理想的な行動から逸脱します。ただし、炭酸ガスなどのいくつかのガスが他の人より外れてください。この実験では炭酸ガスの理想的な行動からの偏差を測定しました。水素実験前と同じしました。

対モグラ回温度圧力倍ボリュームのプロットをプロットし、プロットの傾きから理想気体定数を算出します。二酸化炭素はも周囲条件下での理想的な行動から大幅に逸脱しました。この現象はだった水素と認められなかった魅力的なの分子間相互作用による。

理想気体法律は、同定や爆発性のガス大気試料中の定量に使用されます。本研究領域は、軍事およびセキュリティを非常に重要です。

ここでは、ガスのサンプルの爆発的なコンポーネントは温度脱着ガスクロマトグラフィーを用いた定量化されました。理想気体法律と同様に、データ、それからこれらの危険物質を定量化するために使用されました。

ゼウスの理想気体法律入門を見てきただけ。このビデオを見た後は、法、および同等化が適用される状況の概念を理解する必要があります。

見てくれてありがとう!

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter