Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education
Biochemistry

A subscription to JoVE is required to view this content.

Ultracentrifugação de gradiente de densidade
 
Click here for the English version

Ultracentrifugação de gradiente de densidade

Overview

A ultracentrifugação gradiente de densidade é uma técnica comum usada para isolar e purificar biomoléculas e estruturas celulares. Esta técnica explora o fato de que, em suspensão, partículas mais densas do que o solvente irão sedimentar, enquanto aquelas que são menos densas flutuarão. Uma ultracentragem de alta velocidade é usada para acelerar esse processo, a fim de separar biomoléculas dentro de um gradiente de densidade, que pode ser estabelecido por camadas de líquidos de densidade decrescente em um tubo de centrífuga.

O vídeo abordará os princípios da ultracentrifugação de gradiente de densidade, incluindo um procedimento que demonstra a preparação da amostra, a criação de um gradiente de sacarose, ultracentrifugação e coleta de analitos fracionados. A seção de aplicações discute o isolamento de complexos multi-proteínas, o isolamento de complexos ácidas nucleicos e a separação usando gradientes de densidade de cloreto de césio.

A ultracentrifugação de gradiente de densidade é uma abordagem comum para isolar e purificar estruturas celulares para experimentos bioquímicos. A técnica usa uma centrífuga de alta velocidade, ou ultra, para separar componentes celulares não destrutivos em um gradiente de densidade. Este vídeo descreve os princípios da ultracentrifugação de gradiente de densidade, fornece um procedimento geral usando um gradiente de sacarose e discute algumas aplicações.

Vamos começar examinando os princípios dos ultracentrificos e gradientes de densidade. Uma suspensão contém partículas em um solvente líquido. Por causa da gravidade, partículas mais densas que o sedimento solvente fora enquanto aqueles menos densos do que o solvente flutuam. Quanto maior a diferença de densidade entre a partícula e o solvente, mais rápida será a separação.

Uma ultracentragem contém uma unidade chamada rotor, que gira a velocidades altamente controladas, simulando um forte campo gravitacional. Dentro deste campo, as diferenças de densidade entre partículas e solvente são ampliadas.

A força do campo depende da velocidade de rotação. Mesmo um pequeno rotor a uma velocidade rotacional relativamente baixa pode criar uma força milhares de vezes mais forte que o campo gravitacional da Terra.

Se um tubo contiver vários líquidos de diferentes densidades, a centrifugação os manterá em camadas separadas por ordem de densidade, com o líquido mais denso mais próximo da base. Tal camada de múltiplos líquidos é chamado de "gradiente de densidade". Há dois tipos. Em gradientes de passo, líquidos de densidade decrescente são cuidadosamente em camadas em cima uns dos outros. Em gradientes contínuos, os líquidos são misturados em proporções variadas, de modo que a densidade diminui suavemente da base para cima.

Organelas celulares podem ser separadas usando um gradiente de passo, através de "centrifugação de densidade isócnica-gradiente". Este é o procedimento de centrifugação mais simples e comum.

Este procedimento é usado para separar as estruturas celulares. Quanto mais densa a organela, mais ela desce com mitocôndrias no topo e ácidos nucleicos em direção ao fundo.

Agora que você sabe os princípios por trás da técnica, vamos vê-la no laboratório.

Antes do procedimento ser iniciado, devem ser anotadas as classificações de velocidade e densidade do fabricante, e a ultracentrúruga verificada para corrosão. Este procedimento usa um rotor de balde de balanço.

Primeiro, o material celular é preparado pela homogeneização das células, que liberam suas organelas de forma não destrutiva. O homogeneizado pode ser fracionado através de centrifugação preliminar de baixa velocidade, para remover componentes de baixa densidade. Em seguida, as soluções de sacarose são preparadas.

A sacarose é adicionada em quantidades crescentes para que cada solução seja mais concentrada e, portanto, mais densa do que a anterior. As densidades exatas das soluções dependerão dos componentes a serem separados, que variam entre os organismos. As soluções devem ter densidades entre as dos componentes a serem separadas, com a última solução mais densa que o componente mais denso do analito. Técnicas para separar componentes mais densos que a sacarose, como ácidos nucleicos, são descritas nas aplicações.

O gradiente de sacarose é agora criado em um tubo de centrífuga limpo. Uma pipeta é usada para elaborar a solução de sacarose mais concentrada. Com o tubo ereto, a ponta da pipeta é colocada alta contra a parede, e o líquido dispensado constantemente para baixo. É importante que a área de trabalho seja mantida livre de vibrações e outros distúrbios.

Após a substituição da ponta, as demais soluções são adicionadas por ordem de diminuição da densidade. Eles são dispensados cuidadosamente para formar camadas distintas e evitar a mistura. Finalmente, cerca de meio mililitro da amostra celular é adicionado em cima do gradiente, e o tubo é pesado. Isso é usado para equilibrar a distribuição de peso, o próximo passo do processo.

A centrifugação deve começar o mais rápido possível. O tubo é colocado no rotor, que é então equilibrado colocando soluções em branco de igual peso em ranhuras opostas. O rotor é colocado no ultracentrifuuge e o sistema selado. A temperatura e a velocidade de rotação e o tempo estão definidos. Os valores típicos são 4 °C com uma força de mais de 100.000 x g para 16 h.

Após a centrifugação, o tubo é retirado do rotor, tomando o cuidado de mantê-lo ereto e sem ser perturbado. Os diferentes componentes celulares têm fracionadas em bandas discretas entre as camadas de solução. As frações podem ser coletadas com uma seringa. Alternativamente, a parte inferior do tubo pode ser perfurada com uma agulha fina e esterilizada e o fluxo coletado em tubos estéreis. Os componentes celulares foram agora isolados. Eles podem ser armazenados a -80 °C.

Agora que vimos o procedimento básico, vamos ver algumas aplicações.

Uma aplicação típica é o isolamento de complexos multi-proteínas em células vegetais. Neste exemplo, complexos responsáveis pelo fluxo de elétrons cíclicos estão sendo isolados da timilakoida, o local da reação de luz na fotossíntese. Este procedimento utiliza soluções discretas de 14 a 45% de sacarose. Centrifugação ocorre mais de 100.000 x g para 14 h a 4 °C.

Como os ácidos nucleicos são mais densos que a sacarose, a centrífugação isofícnica não pode separá-los das organelas não destrutivamente.

Uma técnica diferente, conhecida como "centrifugação taxa-zonal" é usada. Separa organelas com base em suas taxas de sedimentação, que dependem não apenas de suas densidades, mas também de suas conformações. Um gradiente contínuo é usado para separar os componentes com base nesta propriedade.

As etapas processuais são semelhantes às dos casos isopícnicos. Neste exemplo, os complexos RNA-ribossomo são isolados usando um gradiente contínuo de 5% a 20%, centrifuso a 230.000 x g. A centrifugação é interrompida após algumas horas para evitar co-precipitação.

Os fios de ácido nucleico podem ser separados uns dos outros com base na densidade.

Isso porque as vertentes ricas em guanina e citosina são mais densas do que as ricas em adenina e tiamina. Neste caso, o gradiente não pode ser feito de sacarose, pois a sacarose é menos densa que os ácidos nucleicos. Em vez disso, são utilizados gradientes de cloreto de césio, tipicamente de 1,65 a 1,75 g/mL, pois possuem densidade suficiente e baixa viscosidade.

Aqui vemos DNA de plâncton sendo purificado usando um gradiente contínuo de cloreto de césio. A centrifugação ocorre a mais de 1.000.000 x g por 18 h sob vácuo.

Você acabou de assistir o vídeo de JoVE sobre ultracentrifugação com um gradiente de densidade de sacarose. Agora você deve entender como funciona um gradiente de densidade, como construir um gradiente de passos e como carregar e operar uma ultracentrifuagem. Obrigado por assistir!

Procedure

A ultracentrifugação gradiente de densidade é uma técnica comum usada para isolar e purificar biomoléculas e estruturas celulares. Esta técnica explora o fato de que, em suspensão, partículas mais densas do que o solvente irão sedimentar, enquanto aquelas que são menos densas flutuarão. Uma ultracentragem de alta velocidade é usada para acelerar esse processo, a fim de separar biomoléculas dentro de um gradiente de densidade, que pode ser estabelecido por camadas de líquidos de densidade decrescente em um tubo de centrífuga.

O vídeo abordará os princípios da ultracentrifugação de gradiente de densidade, incluindo um procedimento que demonstra a preparação da amostra, a criação de um gradiente de sacarose, ultracentrifugação e coleta de analitos fracionados. A seção de aplicações discute o isolamento de complexos multi-proteínas, o isolamento de complexos ácidas nucleicos e a separação usando gradientes de densidade de cloreto de césio.

A ultracentrifugação de gradiente de densidade é uma abordagem comum para isolar e purificar estruturas celulares para experimentos bioquímicos. A técnica usa uma centrífuga de alta velocidade, ou ultra, para separar componentes celulares não destrutivos em um gradiente de densidade. Este vídeo descreve os princípios da ultracentrifugação de gradiente de densidade, fornece um procedimento geral usando um gradiente de sacarose e discute algumas aplicações.

Vamos começar examinando os princípios dos ultracentrificos e gradientes de densidade. Uma suspensão contém partículas em um solvente líquido. Por causa da gravidade, partículas mais densas que o sedimento solvente fora enquanto aqueles menos densos do que o solvente flutuam. Quanto maior a diferença de densidade entre a partícula e o solvente, mais rápida será a separação.

Uma ultracentragem contém uma unidade chamada rotor, que gira a velocidades altamente controladas, simulando um forte campo gravitacional. Dentro deste campo, as diferenças de densidade entre partículas e solvente são ampliadas.

A força do campo depende da velocidade de rotação. Mesmo um pequeno rotor a uma velocidade rotacional relativamente baixa pode criar uma força milhares de vezes mais forte que o campo gravitacional da Terra.

Se um tubo contiver vários líquidos de diferentes densidades, a centrifugação os manterá em camadas separadas por ordem de densidade, com o líquido mais denso mais próximo da base. Tal camada de múltiplos líquidos é chamado de "gradiente de densidade". Há dois tipos. Em gradientes de passo, líquidos de densidade decrescente são cuidadosamente em camadas em cima uns dos outros. Em gradientes contínuos, os líquidos são misturados em proporções variadas, de modo que a densidade diminui suavemente da base para cima.

Organelas celulares podem ser separadas usando um gradiente de passo, através de "centrifugação de densidade isócnica-gradiente". Este é o procedimento de centrifugação mais simples e comum.

Este procedimento é usado para separar as estruturas celulares. Quanto mais densa a organela, mais ela desce com mitocôndrias no topo e ácidos nucleicos em direção ao fundo.

Agora que você sabe os princípios por trás da técnica, vamos vê-la no laboratório.

Antes do procedimento ser iniciado, devem ser anotadas as classificações de velocidade e densidade do fabricante, e a ultracentrúruga verificada para corrosão. Este procedimento usa um rotor de balde de balanço.

Primeiro, o material celular é preparado pela homogeneização das células, que liberam suas organelas de forma não destrutiva. O homogeneizado pode ser fracionado através de centrifugação preliminar de baixa velocidade, para remover componentes de baixa densidade. Em seguida, as soluções de sacarose são preparadas.

A sacarose é adicionada em quantidades crescentes para que cada solução seja mais concentrada e, portanto, mais densa do que a anterior. As densidades exatas das soluções dependerão dos componentes a serem separados, que variam entre os organismos. As soluções devem ter densidades entre as dos componentes a serem separadas, com a última solução mais densa que o componente mais denso do analito. Técnicas para separar componentes mais densos que a sacarose, como ácidos nucleicos, são descritas nas aplicações.

O gradiente de sacarose é agora criado em um tubo de centrífuga limpo. Uma pipeta é usada para elaborar a solução de sacarose mais concentrada. Com o tubo ereto, a ponta da pipeta é colocada alta contra a parede, e o líquido dispensado constantemente para baixo. É importante que a área de trabalho seja mantida livre de vibrações e outros distúrbios.

Após a substituição da ponta, as demais soluções são adicionadas por ordem de diminuição da densidade. Eles são dispensados cuidadosamente para formar camadas distintas e evitar a mistura. Finalmente, cerca de meio mililitro da amostra celular é adicionado em cima do gradiente, e o tubo é pesado. Isso é usado para equilibrar a distribuição de peso, o próximo passo do processo.

A centrifugação deve começar o mais rápido possível. O tubo é colocado no rotor, que é então equilibrado colocando soluções em branco de igual peso em ranhuras opostas. O rotor é colocado no ultracentrifuuge e o sistema selado. A temperatura e a velocidade de rotação e o tempo estão definidos. Os valores típicos são 4 °C com uma força de mais de 100.000 x g para 16 h.

Após a centrifugação, o tubo é retirado do rotor, tomando o cuidado de mantê-lo ereto e sem ser perturbado. Os diferentes componentes celulares têm fracionadas em bandas discretas entre as camadas de solução. As frações podem ser coletadas com uma seringa. Alternativamente, a parte inferior do tubo pode ser perfurada com uma agulha fina e esterilizada e o fluxo coletado em tubos estéreis. Os componentes celulares foram agora isolados. Eles podem ser armazenados a -80 °C.

Agora que vimos o procedimento básico, vamos ver algumas aplicações.

Uma aplicação típica é o isolamento de complexos multi-proteínas em células vegetais. Neste exemplo, complexos responsáveis pelo fluxo de elétrons cíclicos estão sendo isolados da timilakoida, o local da reação de luz na fotossíntese. Este procedimento utiliza soluções discretas de 14 a 45% de sacarose. Centrifugação ocorre mais de 100.000 x g para 14 h a 4 °C.

Como os ácidos nucleicos são mais densos que a sacarose, a centrífugação isofícnica não pode separá-los das organelas não destrutivamente.

Uma técnica diferente, conhecida como "centrifugação taxa-zonal" é usada. Separa organelas com base em suas taxas de sedimentação, que dependem não apenas de suas densidades, mas também de suas conformações. Um gradiente contínuo é usado para separar os componentes com base nesta propriedade.

As etapas processuais são semelhantes às dos casos isopícnicos. Neste exemplo, os complexos RNA-ribossomo são isolados usando um gradiente contínuo de 5% a 20%, centrifuso a 230.000 x g. A centrifugação é interrompida após algumas horas para evitar co-precipitação.

Os fios de ácido nucleico podem ser separados uns dos outros com base na densidade.

Isso porque as vertentes ricas em guanina e citosina são mais densas do que as ricas em adenina e tiamina. Neste caso, o gradiente não pode ser feito de sacarose, pois a sacarose é menos densa que os ácidos nucleicos. Em vez disso, são utilizados gradientes de cloreto de césio, tipicamente de 1,65 a 1,75 g/mL, pois possuem densidade suficiente e baixa viscosidade.

Aqui vemos DNA de plâncton sendo purificado usando um gradiente contínuo de cloreto de césio. A centrifugação ocorre a mais de 1.000.000 x g por 18 h sob vácuo.

Você acabou de assistir o vídeo de JoVE sobre ultracentrifugação com um gradiente de densidade de sacarose. Agora você deve entender como funciona um gradiente de densidade, como construir um gradiente de passos e como carregar e operar uma ultracentrifuagem. Obrigado por assistir!

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Nenhum conflito de interesses declarado.

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

Tags

Valor vazio emissão

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter