Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education
Bioengineering

A subscription to JoVE is required to view this content.

Microfabricação via Fotolitografia
 
Click here for the English version

Microfabricação via Fotolitografia

Summary

A fabricação de dispositivos BioMEM é frequentemente feita usando uma técnica de microfabização chamada fotolitografia. Este método amplamente utilizado utiliza a luz para transferir um padrão para um wafer de silício, e fornece a base para a fabricação de muitos tipos de dispositivos BioMEM.

Este vídeo apresenta a técnica de fotolitografia, mostra como o processo é realizado na sala de limpeza e introduz algumas aplicações do processo.

Overview

A fabricação de dispositivos BioMEM é frequentemente feita usando uma técnica de microfabização chamada fotolitografia. Este método amplamente utilizado utiliza a luz para transferir um padrão para um wafer de silício, e fornece a base para a fabricação de muitos tipos de dispositivos BioMEM.

Este vídeo apresenta a técnica de fotolitografia, mostra como o processo é realizado na sala de limpeza e introduz algumas aplicações do processo.

Procedure

A necessidade aumentada de dispositivos portáteis com volumes de amostra extremamente pequenos, impulsionou a miniaturização de dispositivos chamados BioMEMs. BioMEMs são produzidos por microfabricação. Um processo de fabricação de estruturas de microescala usando tecnologia de semicondutores. Uma técnica de microfabricação chamada fotolithografia, é frequentemente usada para padronizar padrões complexos em um substrato usando luz. Este vídeo introduzirá o processo de fotolitografia, demonstrará a técnica em laboratório e fornecerá insights sobre algumas aplicações onde a fotolitografia é usada.

Semicondutores, ou seja, wafers de silício, são tipicamente usados como substrato na micro-fabricação via fotolithografia. Primeiro, o wafer é limpo para remover contaminantes orgânicos. Em seguida, uma camada de substrato é formada em cima. Por exemplo, o dióxido de silício é formado usando oxidação térmica. Para iniciar a fotolitografia, uma camada de uma substância viscosa e reativa UV, chamada fotoresist, é revestida de uma espessura uniforme no substrato. O substrato revestido fotoresistista é então exposto à luz UV intensa, através de um estêncil precisamente padronizado chamado fotomask. Existem dois tipos de fotoresist; primeira resistência positiva torna-se solúvel após a exposição à luz UV. Em contraste, as regiões expostas de resistência negativa tornam-se interlocuções e são insolúveis. A parte solúvel do fotoresist é então removida usando uma solução de desenvolvedor. Deixando para trás regiões fotoresististas padronizadas e substratos expostas. O padrão é então gravado na camada de dióxido de silício exposto. Uma técnica de gravura seca chamada gravura de íon reativo usa plasma quimicamente reativo para remover material depositado no wafer. Alternativamente, um etch molhado, como o ácido fluorídrico pode ser usado para etch dióxido de silício. A técnica de gravação vai variar dependendo do material que está sendo processado. Finalmente, o fotoresist restante é removido, deixando uma microestrutura de silício precisamente padronizada. Esta estrutura pode então ser usada diretamente, ou como um molde para a fabricação de dispositivos eletrônicos e microfluidos. Agora que o procedimento básico da fotolitografia foi explicado, vamos dar uma olhada em como realizar o procedimento em um ambiente de limpeza.

Primeiro, a máscara fotográfica que será usada para criar o padrão é projetada e encomendada de um fabricante. Em seguida, o processo de fotolitografia é realizado em uma sala de limpeza, que filtra rotineiramente o ar para minimizar a contaminação da poeira. Primeiro, uma camada de dióxido de silício é formada na superfície do wafer de silício usando oxidação térmica. Uma vez que o wafer é oxidado, ele é colocado no mandril spin-coater. Fotoresist é derramado no centro do wafer, até cobrir a maior parte da superfície do wafer. O fotoresist é então revestido de spin para criar um revestimento uniforme e fino. Em seguida, o wafer revestido é assado em uma placa quente para evaporar qualquer solvente, e solidificar o fotoresist. O wafer é carregado no alinhador de máscaras, contendo a máscara específica para o padrão desejado. Em seguida, o wafer é exposto à luz UV através da máscara fotográfica e, em seguida, cozido para definir o fotoresist desenvolvido. As regiões solúveis do fotoresist são removidas usando uma solução de desenvolvedor específica para o tipo de fotoresist usado. Finalmente, o wafer é enxaguado e seco, deixando o fotoresist estampado no wafer.

Após a fotolitografia, o padrão é gravado na camada superior de dióxido de silício, usando gravura de íon reativo profundo. Após a gravação, o fotoresist restante é removido encharcando o wafer em um removedor fotoresist apropriado. O wafer é então enxaguado com isopropanol e acetona e seco sob nitrogênio. Em seguida, uma solução de limpeza de piranha é preparada para remover resíduos orgânicos em excesso. Piranha é uma mistura de ácido sulfúrico concentrado, e peróxido de hidrogênio. Esta solução deve ser usada em um capô aprovado e bem ventilado com treinamento adequado. Piranha é extremamente perigosa e pode ser explosiva. O wafer fica submerso em piranha por vários minutos, e depois enxaguado com água. Finalmente, o wafer é enxaguado com acetona e metanol e seco com gás nitrogênio para deixar a estrutura limpa e final.

Padrões de microescala gerados pela fotolitografia são usados para criar uma ampla gama de dispositivos BioMEM. Por exemplo, a fotolitografia pode ser usada para criar padrões metálicos em um substrato, como um wafer de silício ou escorregador de vidro. Em vez de gravar a camada superior do substrato, o metal é depositado em cima do padrão fotoresistista usando revestimento sputter, ou evaporação metálica. Neste exemplo, uma camada de adesão ao cromo é revestida em um escorregador de vidro, seguida por uma camada de ouro. Após o depoimento, os fotoresistas são removidos para expor os padrões de ouro. Os padrões de ouro podem então ser usados para o conjunto controlado de células, ou como eletrodos para bioeletrônica. A fotolitografia também pode ser usada para criar micro-padrões de polímeros. Para isso, uma camada de polímero é depositada em cima do wafer de silício antes da fotolitografia. Como com as camadas de dióxido de silício em wafers de silício, o padrão de polímero exposto pelo fotoresist desenvolvido é gravado. O fotoresist restante é então removido para deixar apenas o polímero padronizado. O polímero padronizado pode ser usado para induzir o crescimento celular controlado, nas ilhas de polímero ou ao redor. Embora a fotolitografia esteja limitada à microescala, padrões de nanoescala podem ser fabricados usando um feixe de íons focado, ou FIB. A FIB usa um feixe de íons para ablatar ou depositar materiais em uma superfície em um padrão preciso. Neste exemplo, eletrodos de ouro pré-padronizados foram funcionalizados com cristais de molhênio. Em seguida, pontes de platina nano-escala foram depositadas usando FIB para conectar o cristal ao eletrodo de ouro. Essas estruturas podem então ser usadas para melhorar e outros dispositivos BioMEM miniaturizados.

Você acabou de assistir a Introdução de Jove à Microfabografia via Fotolithografia. Agora você deve entender o processo básico de fotolitografia, como é realizado em laboratório e algumas maneiras que a técnica é usada na fabricação de dispositivos BioMEM. Obrigado por assistir.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Nenhum conflito de interesses declarado.

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

Tags

Valor vazio emissão

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter