Microgavage de larves de poisson zèbre

Published 2/20/2013
0 Comments
  CITE THIS  SHARE 
Biology

You must be subscribed to JoVE to access this content.

Fill out the form below to receive a free trial:

Welcome!

Enter your email below to get your free 10 minute trial to JoVE!





By clicking "Submit," you agree to our policies.

 

Summary

Cite this Article

Copy Citation

Cocchiaro, J. L., Rawls, J. F. Microgavage of Zebrafish Larvae. J. Vis. Exp. (72), e4434, doi:10.3791/4434 (2013).

Please note that all translations are automatically generated through Google Translate.

Click here for the english version. For other languages click here.

Abstract

Materials

Name Company Catalog Number Comments
Finquel (Tricaine methanesulfonate) Argent Chemical Laboratories MS-222 Larvae anesthesia
Phenol Red Solution Sigma-Aldrich P0290-100 ml 0.5% in DPBS, cell-culture tested
Mineral oil, light, white (high purity) Amresco J217-500 ml For needle backfill and volume testing
TxRed-Dextran, 10,000 MW, lysine fixable Invitrogen/ Molecular Probes D-1863 1% suspension in 1x PBS/phenol red
FM4-64FX Invitrogen/ Molecular Probes F34653 5 mM stock in water
Methylcellulose MP Biochemicals 0215549590
Borosilicate glass capillaries Drummond Scientific 3-000-203-G/X OD 1.14 mm, ID 0.53 mm, 3.5 in length
Plastic form for mold making Adaptive Science Tools TU-1
Nanoject II microinjection unit Drummond Scientific 3-000-204
Flaming Brown Micropipette Puller, 3.0 mm wide-trough filament Sutter Instrument Co. P-97, FT330B Needle fabrication
Student Dumont #5 forceps Fine Science Tools 91150-20 0.1 x 0.06 mm, needle clipping
Eyepiece Graticle, 5 mm - 100 divisions Leica 10394771 Needle clipping
Microforge Narishige MF-900 Needle clipping and fire-polishing
Tuberculin SlipTip syringe needle Becton Dickinson 309626 1 ml, 25G 5/8-needle
Fluoresbrite YG Microspheres (2.0 μm) Polysciences, Inc. 18338 Intestinal motility analysis
Dissecting Microscope Leica S6E Gavage procedure
Fluorescence Stereomicroscope Leica M205C Dextran barrier assay
Confocal microscope Zeiss LSM510 Imaging of dextran in circulation

DOWNLOAD MATERIALS LIST

References

  1. Kuhlman, J., Eisen, J. S. Genetic screen for mutations affecting development and function of the enteric nervous system. Dev. Dyn. 236, 118-127 (2007).
  2. Pack, M., et al. Mutations affecting development of zebrafish digestive organs. Development. 123, 321-328 (1996).
  3. Wallace, K. N., Pack, M. Unique and conserved aspects of gut development in zebrafish. Dev. Biol. 255, 12-29 (2003).
  4. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K., Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 122, 157-173 (2005).
  5. Ng, A. N., et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114-135 (2005).
  6. Hama, K., et al. In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters. Am. J. Physiol. Gastrointest. Liver Physiol. 296, 445-453 (2009).
  7. Carten, J. D., Bradford, M. K., Farber, S. A. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev. Biol. 360, 276-285 (2011).
  8. Rich, A. A new high-content model system for studies of gastrointestinal transit: the zebrafish. Neurogastroenterol Motil. 21, 225-228 (2009).
  9. Bagnat, M., Cheung, I. D., Mostov, K. E., Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nat. Cell Biol. 9, 954-960 (2007).
  10. Bagnat, M., et al. Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr. Biol. 20, 1840-1845 (2010).
  11. Shepherd, I., Eisen, J. Development of the zebrafish enteric nervous system. Methods Cell Biol. 101, 143-160 (2011).
  12. Brugman, S., et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology. 137, 1757-1767 (2009).
  13. Oehlers, S. H., et al. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. Dis. Model Mech. 4, 832-841 (2011).
  14. Oehlers, S. H., et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev Dyn. 240, 288-298 (2011).
  15. Faro, A., Boj, S. F., Clevers, H. Fishing for intestinal cancer models: unraveling gastrointestinal homeostasis and tumorigenesis in zebrafish. Zebrafish. 6, 361-376 (2009).
  16. Fleming, A., Jankowski, J., Goldsmith, P. In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm. Bowel Dis. 16, 1162-1172 (2010).
  17. Kanther, M., et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract. Gastroenterology. (2011).
  18. Rawls, J. F., Samuel, B. S., Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. U.S.A. 101, 4596-4601 (2004).
  19. Rawls, J. F., Mahowald, M. A., Goodman, A. L., Trent, C. M., Gordon, J. I. In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc. Natl. Acad. Sci. U.S.A. 104, 7622-7627 (2007).
  20. Kanther, M., Rawls, J. F. Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 22, 10-19 (2010).
  21. Bates, J. M., et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374-386 (2006).
  22. Cheesman, S. E., Guillemin, K. We know you are in there: conversing with the indigenous gut microbiota. Res Microbiol. 158, 2-9 (2007).
  23. Bates, J. M., Akerlund, J., Mittge, E., Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2, 371-382 (2007).
  24. Camp, J. G., Jazwa, A. L., Trent, C. M., Rawls, J. F. Intronic cis-regulatory modules mediate tissue-specific and microbial control of angptl4/fiaf transcription. PLoS Genetics. In Press (2012).
  25. Cheesman, S. E., Neal, J. T., Mittge, E., Seredick, B. M., Guillemin, K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc. Natl. Acad. Sci. U.S.A. 108, 4570-4577 (2011).
  26. Field, H. A., Kelley, K. A., Martell, L., Goldstein, A. M., Serluca, F. C. Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol. Motil. 21, 304-312 (2009).
  27. Westerfield, M. The Zebrafish Book. 4 edn, University of Oregon Press. (2000).
  28. Pham, L. N., Kanther, M., Semova, I., Rawls, J. F. Methods for generating and colonizing gnotobiotic zebrafish. Nat. Protoc. 3, 1862-1875 (2008).
  29. Shen, L., Weber, C. R., Raleigh, D. R., Yu, D., Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73, 283-309 (2011).
  30. Van Itallie, C. M., et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J. Cell. Sci. 121, 298-305 (2008).
  31. Van Itallie, C. M., Anderson, J. M. Measuring size-dependent permeability of the tight junction using PEG profiling. Methods Mol. Biol. 762, 1-11 (2011).
  32. Watson, C. J., Rowland, M., Warhurst, G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am. J. Physiol. Cell Physiol. 281, 388-397 (2001).
  33. Rodgers, L. S., Fanning, A. S. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken). 68, 653-660 (2011).
  34. Gonzalez-Mariscal, L., Chavez de Ramirez, B., Cereijido, M. Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86, 113-125 (1985).
  35. Palant, C. E., Duffey, M. E., Mookerjee, B. K., Ho, S., Bentzel, C. J. Ca2+ regulation of tight-junction permeability and structure in Necturus gallbladder. Am. J. Physiol. 245, C203-C212 (1983).
  36. Holmberg, A., Schwerte, T., Pelster, B., Holmgren, S. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 207, 4085-4094 (2004).
  37. Rich, A., et al. Kit-like immunoreactivity in the zebrafish gastrointestinal tract reveals putative. 236, 903-911 (2007).
  38. Holmberg, A., Olsson, C., Hennig, G. W. TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J. Exp. Biol. 210, 1084-1091 (2007).
  39. Hennig, G. W., Costa, M., Chen, B. N., Brookes, S. J. Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J. Physiol. 517, (Pt 2), 575-590 (1999).
  40. Flynn, E. J. 3rd, Trent, C. M., Rawls, J. F. Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio. J. Lipid Res. 50, 1641-1652 (2009).
  41. Clifton, J. D., et al. Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS One. 5, e12386 (2010).
  42. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N., Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 132, 5199-5209 (2005).
  43. Berghmans, S., Hunt, J., Roach, A., Goldsmith, P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res. 75, 18-28 (2007).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Video Stats