プリザーブド解剖組織と無傷マウスの鼻腔組織を準備するための効果的なマニュアル脱骨方法

1Biological Sciences, University of Maryland Baltimore County
* These authors contributed equally
Published 8/10/2013
1 Comment
  CITE THIS  SHARE 
Biology

You must be subscribed to JoVE to access this content.

Fill out the form below to receive a free trial:

Welcome!

Enter your email below to get your free 10 minute trial to JoVE!





By clicking "Submit," you agree to our policies.

 

Summary

Cite this Article

Copy Citation

Dunston, D., Ashby, S., Krosnowski, K., Ogura, T., Lin, W. An Effective Manual Deboning Method To Prepare Intact Mouse Nasal Tissue With Preserved Anatomical Organization. J. Vis. Exp. (78), e50538, doi:10.3791/50538 (2013).

Please note that all translations are automatically generated through Google Translate.

Click here for the english version. For other languages click here.

Abstract

哺乳類の鼻は複雑な内部構造を持つ多機能な器官である。鼻腔は、解剖学的部位、形態や機能に著しく異なる、嗅覚呼吸、および扁平上皮などの様々な上皮が並んでいます。成体マウスにおいて、鼻、特に内部構造、主嗅上皮(MOE)として後方などの形態と実験的なアクセスを制限する、種々の頭蓋骨で覆われている。ここでは、保存され、解剖学的組織とほぼ全体とそのまま鼻組織を得るための効果的な方法を説明する。解剖顕微鏡下手術のツールを使用して、我々は順番に鼻の周囲の組織の頭蓋骨の骨を取り除く。この手順は、両方のパラホルムアルデヒド固定し、新たに解剖し、肌のマウスの頭を行うことができる。全体の脱骨手順は、従来の化学ベースドに必要な実験時間よりも大幅に短くなって20〜30分程度をとり、石灰化。また、鼻の組織標本から無傷薄い水平または冠状または矢状セクションを取得するために重要である甲、間に閉じ込められた気泡を除去する簡単な方法を提示する。我々の方法を用いて調製した鼻腔組織は、特に地域特有の検査との比較に関心がある研究では、全体のマウント全体上皮の観察だけでなく、形態学、免疫細胞化学、RNAのようなin situハイブリダイゼーション 、および生理学的研究のために使用することができる。

Introduction

哺乳類の鼻腔は、異なる機能を果たす組織や臓器の様々なタイプが含まれています。鼻腔、肺の中に空の旅を可能にし、外に上気道の入り口部分を構成している。吸入空気は、それが同様に清掃や刺激や有害物質や感染性微生物2を除去するためにフィルタリングなどの温度と湿度の調節1を経鼻腔を通過する。両方の治療は腺や血管を含め、鼻上皮および上皮下組織によって実施され、下気道や肺を保護するために不可欠です。呼吸および上皮防衛におけるその役割に加えて、鼻の組織はまた、通過する空気中の化学物質の広い範囲を検出嗅覚と三叉神経システムの末梢感覚装置が含まれています。活性化されたシステムに応じて、鼻の中の化学物質の官能検出のいずれかを誘発することができ嗅覚、刺激、または痛み3,4。

末梢嗅覚系は複雑であり、鼻腔内のいくつかの解剖学的に分離された嗅覚の感覚器官で構成されている。このうち、主嗅上皮(MOE)はげっ歯5の鼻の上皮の約45から52パーセントを占めると後方領域に配置され、最大である。前腹領域では、鼻中隔の各辺に沿って座る鼻器官06として知られている管状構造のペアがある。 Masera 7,8とGruneberg神経節9の中隔臓器として知られている嗅覚ニューロンの二つの追加の小さなグループが、それぞれ、腹側中隔と鼻腔の背エントリ領域に沿って存在します。これらの末梢器官は、独特の形態の特徴、細胞マーカー発現、および生理機能と神経上皮が含まれています。彼らは一緒に臭いの何千ものを検出絶妙な感度10-12持つ分子。

嗅覚の感覚器官に加えて、鼻腔はまた、他の感覚系を収容する。これは、ペプチド性三叉神経繊維は、特に気道上皮13,14鼻上皮に存在することが知られている。これらの繊維の中には、刺激性や有毒化学物質を検出し、そのような4,15の咳やくしゃみなどの保護反射を開始する責任があります。刺激性の臭気と苦味化合物は、また、三叉神経線維16-19によって支配されているその多くは孤独な化学感覚細胞(SCCの)の最近発見された人口によって検出することができる。これらのSCCは、それらがまた、保護機能16-18を果たす可能性があることを示唆、鼻腔と鋤鼻エントリーダクトの入口領域における高密度に配置されています。従って、鼻上皮は、その機能に応じて、形態学、および細胞組成物が実質的に異なる可能性が解剖学的部位。

でも、シングルと専門上皮内、地域差があります。 MOEは、その一例である。構造を複雑にし、カールしているMOEライン様々な甲、。したがって、それらのために、異なるMOE体験異なる空気流量の領域、および、異なる拡散と空中匂い分子20のクリアランス速度。また、それは所与の匂い受容体を発現する嗅細胞(OSNs)はMOE 21,22の4迂回ゾーンのいずれかに位置していることが知られている。この場所の差がどのように影響するか匂いにOSNの応答は、主に知られていない。さらに、いくつかのOSN集団は、地域嗜好を示す。グアニル酸シクラーゼ-D(GC-D)発現OSNsはectoturbinates 23,24の袋小路領域を支持する帯状の分布を有する。さらに最近では、我々は(TR一過性受容体電位チャネルM5を表現正規OSNsの亜集団を発見PM5)とは、優先的に横と腹側領域に25に位置しています。これらの結果は、MOEが均一でないことを示している。しかし、これらの地域差は、嗅覚のコーディングにどのように影響するかを理解されていません。これは一部にはあるためMOEと鼻の徹底的な生理調査が現在の方法を使用して保存され、解剖学的組織とそのまま鼻上皮を得ることの難しさによって限定されているされています。

鼻の上皮は、主に鼻、上顎、口蓋、頬骨、および篩骨骨を含む頭蓋前方骨に囲まれています。成体マウスや他の齧歯類モデルでは、これらの骨は特に密接に関連した鼻腔組織、繊細な甲を損傷することなく削除するのは難しいとは困難である。多くの場合、化学ベースの脱灰は、免疫組織化学、形態学、およびin situハイブリダイゼーション研究用鼻組織の凍結切片許可するように骨を柔らかくするために使用されていますが、依鼎は、動物の年齢に、脱灰プロセスは一晩まで7日間24,26-28続くことできます。それは組織が固定·保存される必要があるため、この治療法も限られている。さらに、化学的な脱灰が厳しいことと、いくつかの敏感な抗体29,30の免疫標識に影響を与えることができる。生理学的研究のために、生きている組織が ​​必要とされているので、これらの実験は、しばしば、その頭蓋骨の骨薄いと17,31,32柔らかい新生児から得孤立OSNsまたはMOEスライスに行われている。他の分野に生理の記録を制限する、生理学的研究はまた、分割して頭25,33,34のホールマウント標本を利用することができますが、通常は鼻の唯一の内側表面は簡単にアクセスできます。

ここでは、保存され、元の解剖学的組織と形態をそのまま鼻組織を準備するために効果的な、手動の除骨方法について説明します。私たちは、順番に前方の主要な骨を取り除くマウスは非常に古く、凍結切片が必要とされない限り、薄い甲の骨をそのまま維持しながら、ほぼ完全に無傷鼻上皮を公開する解剖顕微鏡下で頭蓋骨。また、このようにして末梢および中枢両方の回路の同時検査を容易にする、鼻腔組織及び嗅球の間の接続、ならびに脳の残りの部分を保持する方法が延びている。我々の手法は、パラホルムアルデヒド固定だけでなく、新鮮な、ライブ鼻腔組織調製するために用いることができる。したがって、我々の方法は、呼吸、嗅覚、そして鼻の損傷や病気の、形態学的免疫組織化学的および生理学的研究を促進することが期待される。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1。マウス鼻の準備

我々はこの研究で、成人C57BL / 6背景のマウスを使用していました。すべての動物のケアと手順はメリーランド大学、ボルティモア郡の動物のケアと使用委員会(IACUC)によって承認されています。

1.1 paraformaldahyde固定マウスから鼻を取得

図1
図1。マウスの頭蓋骨の骨:頭蓋骨の背面図B:。削除下顎骨と頭蓋骨の腹ビュー。頭蓋骨は、40日齢のマウスから調製した。個々の骨は、より良い視覚化のために色分けされています。 より大きい数字を表示するには、ここをクリックしてください

  1. 番目以下の個々のマウスを固定するtranscardially灌流林の電子プロトコル 、(2008)16。 、固定含む3%パラホルムアルデヒドをバッファリングされた19 mMのL-リジンを簡単に説明すると、マウスは、トリブロモエタノール(アベルチン250μgの/ gの体重)で深く麻酔した0.1Mリン酸緩衝液(PB 30〜50 ml)で経心的に灌流、リンが続く塩酸塩、および0.23パーセントナトリウムのm-ヨウ素(約35〜50ミリリットル)。一つは、また、動物灌流35 Joveの資料の手順に従うことができます。
  2. 下顎骨を切断(または下顎)と頭の皮膚を除去するためにハサミを使用してください。
  3. 身体の残りの部分から頭部全体を分離。
  4. 口蓋を外します。また、 図1Aおよび1Bに示す標本を得るために、頭蓋骨の表面に残っている結合組織と筋肉をきれいに取り除く。
  5. 解剖顕微鏡下では、脳と嗅覚の球根をカバー頭蓋骨を削除します。過剰な組織と骨を切り落とす。ノーTEは、脳と鼻を接続したままにする拡張組織調製のために、唯一の頭蓋骨は削除されます。免疫組織化学的実験のために、組織は、1.5時間後に固定し、0.1Mリン酸に移し一晩、25%ショ糖緩衝生理食塩水(PBS)。鼻腔組織を緩衝スクロース溶液に数回浸漬して切開を通して加湿保たれるべきである。

1.2新たに安楽死させたマウスから鼻を取得

  1. 個々のマウスを清浄ケージに移し、最後の息後に頚椎脱臼5分間続いたCO 2ガスに曝露した。鼻ティッシュで血を軽減するために、胸を開いて、血が排水できるようにするために心をカットするはさみのペアを使用しています。
  2. 25%ショ糖と、ポスト固定と凍結保護を除いて、1.1.5のステップ1.1.2を繰り返します。標本は加湿保管し、タイロードの生理食塩水を含む(単位:mm)で維持されるべきである:140ナClで、5のKCl、1のMgCl 2、1のCaCl 2、10のNaピルビン酸、10 D-グルコース、および10 N-2-ヒドロキシエチルピペラジン-N'-2-エタンスルホン酸緩衝液(HEPES、pHを7.4に調整)。あるいは、キムワイプの部分を折る解剖しながらタイロード溶液及び標本の下に場所でそれを浸し、時折タイロード液に検体を浸したり、細胞や組織の生存を維持するために、それが加湿保つために組織の上、いくつかの解決策をドロップ。

2。切歯、前歯鋤骨と上顎骨の取り外し

  1. 腹側の観点から開始します。鋤骨の骨を見つけて、骨の腹側大部分を破壊する歯を骨鉗子やピンセットを用いて、その長さに沿って鋤骨骨を壊す。
  2. 鋸歯状の鉗子を使用して、そっと離れて鋤鼻器官(VNO)から骨片を撚ることで鋤骨骨の壊れたセグメントを削除。古いヶ月未満のマウスのために注意してください、またはMOEは、これらの2つのステレオに興味を持っている場合のみピコはスキップすることができる。
  3. 鉗子でしっかりと頭をホールド。前歯二門歯と鋤骨の骨との間の前歯上顎の接合部位の両方の前部を破るために骨鉗子を使用してください。
  4. まで背頬骨プレートのレベルに頬骨弓にだけ前方の領域に右上顎の腹部分を破る。
  5. 背側の視点のために鼻の裏返し。背頬骨プレートの右上顎の前歯を破るために骨鉗子を使用してください。頬骨プレート全体の右上顎の前歯が緩んでなければなりません。そっと上顎の基礎となる任意の鼻の組織を分離するために細かい鉗子を使用してから、静かに骨片を持ち上げ。
  6. 左の門歯と左前上顎を緩め、鼻骨が削除された後にそれらを削除するには、手順2.4と2.5を繰り返します。

3。鼻骨と頬骨弓背板の取り外し

  1. 再鋸歯鉗子または骨鉗子を使用してください鼻の骨に単に尾前頭骨の残りの部分を移動します。骨のこの部分を削除した後、鼻の骨の尾の部分はピンセットを用いて把持することができる。
  2. 頬骨プレートに接続されている頬骨弓の前方部分を壊すために骨鉗子を使用してください。
  3. 頬骨プレートの背終わりの側縁に細かい鉗子を取ると、そっと骨を反転し、それを削除してください。骨が緩んでいない場合には、除去のためにそれを緩めるために軽くクランプする骨鉗子を使用しています。
  4. 左右の鼻の骨の間内側縫合糸を緩め微鉗子やカミソリの刃を使用してください。
  5. 右の鼻の骨の尾の端を把持する鋸歯状の鉗子を使用してください。そっとティッシュを根底からそれを分離するために左右に骨を移動します。それは側に骨の側を移動するための鼻の骨の尾三に沿って鉗子を移動するのに便利です。鼻の骨が分離したように、ゆっくりと尾側端から骨を持ち上げる。
  6. 一方、T彼鼻骨を少し持ち上げて、細い気道上皮組織で裏打ちされた骨の横outcroppingを明らかにするために横方向に骨を傾ける。そっと鼻の骨からこの組織を解放するために細かい鉗子を使用してください。鼻骨を持ち上げるために続けています。骨が完全に下にある組織から分離されている場合は、吻側端で鼻骨を切断するはさみを使用しています。
  7. 左の鼻の骨の除去のための手順3.1、3.5および3.6を繰り返します。
  8. ステップ鼻の左側に3.2と3.3を繰り返します。

4。横頬骨弓プレートの取り外し

  1. 同時に頬骨プレート片側を外します。どちら頬骨板が最初に削除することができます。
  2. ブレークは頬骨弓に達するまで腹観点から、頬骨弓に劣る上顎を破る。
  3. 背側の観点から、優しく頬骨弓をつかむと、前方と横持ち上げる。頬骨プレートはまだ任意の組織に接続されている場合、罰金を取る鉗子と優しく組織と骨の間の接続を断つ。
  4. 鼻の反対側の頬骨プレートについて、この手順を繰り返します。

5。軌道の骨の取り外し

  1. 腹側の観点から、鼻の臼歯間palantine骨を壊す。
  2. 鼻の両側に3大臼歯と上顎を壊すために骨鉗子を使用してください。
  3. 鼻の両側に甲に腹と後骨の残りの厚い部分を破壊し、削除します。

6。篩骨の取り外し

  1. 甲に尾突出篩骨のいずれかの部分を破る。これは、甲を覆う篩骨の薄い部分を除去する際に介組織の損失を回避する必要がある。
  2. 鼻の右側には、篩骨の前縁に細かい鉗子を置き、静かにそれを削除します。骨の部分が残っている場合は、すべてになるまでこの手順を繰り返し甲を覆っている薄い骨は削除されました。甲の骨が準備のほとんどで削除する必要はありません。老齢マウスでは、篩板が脆くなる。鼻腔組織の凍結切片が必要な場合は、骨に起因する潜在的な被害を減らすために細かい鉗子でプレートの小片を取り除く。
  3. 鼻の左側のためにステップ6.2)を繰り返します。
  4. 前の切片に残った骨片を取り外します。注意:動物でよりセプタム骨の歳、posterodorsal領域よりもやや厚いと難しいです。一つは、細かい鉗子を使用して、この部分を削除することができます。セプタム骨とライニング上皮組織の背の部分を分離するために骨の両側に鉗子の先端を挿入します。骨をつかむと、標本を保持するために鉗子の一組を使用します。中隔の下部軟骨部分から上部の骨の部分を壊し、ゆっくりそれを削除するには鉗子の別のペアを使用してください。

  1. アスピレーター真空ポンプを設定します。
  2. 埋め込み型で鼻を置きます。 10月のメディアで水没鼻を。
  3. ノーズ組織内に閉じ込められた気泡を除去するために真空を使用します。このプロセスは、5分を要します。
  4. 気泡を除去した後、所望の向きで組織を設定する。
  5. 10月とドライアイスを使用して金型内の組織を凍結。埋め込まれた組織は、その後直ちに凍結切片又は-80℃で将来使用するために保存することができる。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

この方法を使用して、我々は確実にほぼ完全に無傷の鼻腔組織を得ることができます。 図2Aは、パラホルムアルデヒド固定頭部から成人鼻標本の画像を示している。この標本では、MOE、隔臓器、Gruneberg神経節、およびVNOを含むすべての4つのサブ嗅覚感覚器官は、無傷である。また、気道上皮や腺などや船​​舶などの上皮下組織は、保持されます。我々は、我々が正常形態、分布、神経支配、および様々な特殊な感覚細胞集団16,17,36-38における細胞マーカーの発現を調査した多くの研究では、この方法を使用している。

図2Bは、一緒に脳、嗅球、と鼻で標本を示しています。この拡張の準備は、周辺と中央嗅覚システム間の神経接続を必要とする研究では特に便利です。私たちは、頭蓋骨の骨のsuを削除することで、この標本を準備し顔面骨の除去前に脳rrounding。我々の拡張方法は、研究者が単一の製剤の両方の末梢および中枢嗅覚系で実験を行うことができます。

図2に示す鼻腔組織全体マウント観察、ならびに組織切片の調製のために使用することができる。 図3Aは、MOEおよび呼吸領域の両方を介して水平断面カットを示し、図3Bは、中央からカット冠状断面を示しているMOEの。我々は、さまざまな解剖学的部位における上皮と粘膜構造の様々な種類の良いビューのニュートラルレッドでセクションを染色。これらの結果は、我々の技術は、正常および病的な条件の下で鼻の形態学的および機能的変化の包括的比較調査を有効にしても繊細なMOE甲構造と鼻の解剖学的組織を、保持することを示している。

図2
図2。隔離された鼻と脳組織:。当社脱骨法を用いて解剖無傷鼻組織の背面図B:そのまま中枢および末梢嗅覚システム間の神経接続が鼻と脳の背ビューは、 より大きい数字を表示するには、ここをクリックしてください

図3
図3。鼻の組織の切片:。嗅覚や呼吸上皮だけでなく、他の鼻の構造を示す水平断面B:甲Oを冠状断面fの鼻の後部にMOE。両方のセクションでは、ニュートラルレッドと14μmの厚さと染色したMOE:メイン嗅上皮RE:。気道上皮より大きい数字を表示するには、ここをクリックしてください

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ここでは、下記の組織を温存しながら順次周囲の骨を除去することにより、マウスの鼻から無傷の嗅覚および呼吸組織を分離するためのステップごとの手順を示した。我々は慎重に、骨の除去は、その全体をも、最も繊細な組織を維持することができることを示している。我々はまた、我々は神経接続を維持するために一緒に両方の脳と鼻の組織を分離しているこの技術の可能な修正、洞察を共有しています。この新しい方法は、in situハイブリダイゼーション組織化学、RNAでさらに処 ​​理、および生理学的実験のための単一の標本で全体の嗅覚や呼吸器組織を分離するための手段を提供します。

骨除去の利点

我々の方法の前に、脱灰剤は、典型的には、組織切片および免疫組織化学のために骨を柔らかくするために使用された。しかし、脱灰、骨の大きさや動物の年齢に応じて時間あるいは数日間29,30用骨decalcifiersにおける組織のインキュベーションを要する長いプロセスになることがあります。一般的に使用される剤は、変更または免疫標識29,30を妨げる可能性が組織に影響を与えることができる酸を含んでいる。これに対抗するために、いくつかの研究者は骨24,26-28からカルシウムイオンを封鎖するためのエチレンジアミン四酢酸(EDTA)溶液を使用してください。脱灰のこの方法はまた、日を要する。ここに示されている切開は約20〜30分で行うことができ、組織の染色性を変えることができる任意の化学溶液の適用を必要としない。

我々の方法はまた、生理学録画の生きている組織を得るための利点を提供し、新たに解剖鼻から無傷の鼻腔組織を得るために使用することができる。例えば、鼻スライスは共通のCa 2 +のために使用される嗅上皮におけるOSNs 31,32と支持細胞の撮像。これらのスライスは、でなければならない骨が硬化組織を囲む前に新生児マウスから調製。嗅上皮は出生後の発展と成熟を続けているので、新生児の標本は、大人と同じではありません。我々の方法を使用して、研究者は新生児の年齢層よりも古いマウスから無傷の嗅覚組織を得ることができます。これは、特に年齢依存性の変化の研究において、重要な利点を提示する。

修正とトラブルシューティング

私たちは、周囲の骨を除去するために効果的な1シーケンスを示した。しかし、無傷の鼻組織を得るために、骨の除去の他の配列であり、工程手順による工程は研究者および最も関心のある組織の個々のニーズに応じて変更することができる。鋤鼻器官が必要な場合はそれ以上の骨で覆われた領域があるので、例えば、鋤骨の骨が除去時に必要な場所で組織を保持するために把握するために早期の手順で削除する必要があります。 ADAPによって影各アプリケーション手順、関心のある組織をさらなる処理のためにそのまま残る可能性が高い。鼻の骨はまた、以下の組織が骨にしがみついて、骨が離れて持ち上げられるように頻繁に引き裂くように、除去することが困難になる傾向があります。ビデオに示すように、鼻の骨を揺らすことに加えて、小鉗子を穏やかに鼻骨および除去中に骨から離れて組織を下に移動して助けるために下にある組織との間に挿入することができる。

解剖も少しマウスの年齢によって異なります。若いマウスでは、骨は、古いマウスの骨がより脆く、強く一部の地域では、隣接する骨に融合しながら、柔らかくなる傾向があります。柔らかい骨が分離することが困難と骨より小さな断片で、削除する方が簡単です。この差は、容易に分離およびクリーンな除去を促進するために骨の間の接続でスコア又はこすりに鉗子を使用することによって克服することができる。高齢動物では、posterodorsal再隔の祇園はやや厚く、硬く、凍結切片の前に削除する必要があります。手順6.4で説明したように隔壁の骨の一部を除去することができる。古いと若いマウスでは解剖の小さな違いがありますが、年齢が制限要因ではありません。我々の研究では、我々が正常に14日〜2歳までのマウスからそのまま鼻組織を用意しました。

新鮮な組織が柔らかく、より慎重な操作を必要とするものの、固定固定鼻のために、新鮮な鼻に使用解剖手順の間に有意差はありません。両方の製剤では、解剖時に組織が加湿保つことは重要です。それは定期的に、そのVを維持するために供給組織は加湿と栄養続けるように重要であるタイロード溶液中で組織を浸漬したり、解剖しながら組織にソリューションを滴下しかし、緩衝食塩水で新鮮な組織の切開を行う必要はありませんiability。

ここに示さ手順をさらに単一試料( 図2B)における脳と鼻の両方はそのまま残り、骨の除去を含むように変更することができる。この変更は、篩板を通過する脳と鼻の間の神経接続を惜しみ。より技術的なスキルと時間は、単独で、鼻よりも、この解剖のために必要とされる。しかし、周囲から脳への接続を維持することは、この方法のより多様なアプリケーションを可能にします。

制限事項

我々は、in situハイブリダイゼーション分析における免疫組織化学的標識およびmRNAを含む多くの研究のための鼻組織を準備するためにこの方法を使用しており、正常にシグナル伝達経路において多くのタンパク質、様々な細胞集団で染色された細胞マーカーを標識し、形態学的特徴および細胞分布を調べた鼻腔16,17,36-39を通して。私たちは、EXPしませんでした凍結切片と免疫標識でerienceの制限。単一の標本に接続脳と鼻腔組織を保持し、拡張の準備の凍結切片が必要な研究のために、我々は、古いマウスで脆性篩板は切片中に組織の損傷を作成することもできますので、4ヶ月未満のマウスを使用することをお勧めします。しかし、電気生理学的記録を対象として新鮮な組織のため、甲の間に中間組織が全体のマウントの準備で容易にアクセスできません。別個の領域における組織またはスプリットの小片を除去することは問題を克服することができる。従来嗅電図はエンド-甲25,33,34の内側面上で行われているので、我々の組織の準備は少し操作に他の地域からの録音を可能にすることができる。

免疫組織化学を超えたアプリケーション

手順の多くのアプリケーションでは、テクニックをマスターしている人のために存在する。可能なアプリケーションシートイオンは、他の方法で使用して、そのまま、元の解剖学的構成で得ることは困難でしたが、嗅覚や呼吸組織に帯状の研究が含まれています。また、アプリケーションは、全体、新鮮な組織に同時複数録音を可能にすることにより、電気生理学のために存在する。既存の技術を用いて行うことが困難であったこれらの用途のいくつかは、我々の脱骨方法により可能となる。さらに、このプロトコルはまた、比較のために重要な様々な領域での一貫した試料の収集を必要とする、生化学ゲノム及びプロテオーム研究に適合させることができる。

要約すると、私たちは迅速かつ確実に周囲の骨を除去することにより、マウスの鼻で嗅覚や呼吸器の組織にアクセスするための手順を開発しました。この方法は、脱灰、一般に使用される技術に比べて著しい利点を有する。さらに、我々の方法は、化学的処理を必要としないので、組織はimmunohistochemistでの使用に限定されるものではないまたRY実験、しかしin situハイブリダイゼーションおよび生理学的研究適用することができます。したがって、我々の方法は、さらなる処理のためにマウスの鼻を調製するより速く、より直接的な方法である。私達は私達の方法は鼻の地域で嗅覚や呼吸器の研究を促進することを期待しています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は、彼らが競合する経済的利益を持っていないことを宣言します。

Acknowledgements

この作品はWeihong林への研究助成金(NIH / NIDCD 009269、012831及びARRA行政サプリメントNIHの助成)によってサポートされていました。我々は、特にビデオテープに録画して処理するの彼の技術支援のためにUMBCで氏ティムフォードに感謝します。また、ビデオ撮影での機器の援助のためにオリンパスアメリカ社から博士ダフネブラムバーグ、UMBCで氏シェアーペティ氏とニコラス·マッカラムに感謝したい。

Materials

Name Company Catalog Number Comments
Dissection
Rongeur, 1.0 mm Jaw width World Precision Instruments (WPI) 501333
Fine forceps, Dumont 3 WPI 503235
Fine forceps, Dumont 55 WPI 14099
Fine forceps, Dumont AA Fine Science Tools (FST) 11210-20
Specimen forceps, Serrated VWR 82027-440
Operating scissors WPI 501753
Iris scissors, Straight Miltex V95-304
Dissection microscope Olympus SZ40
Name Company Catalog Number Comments
Tissue embedding
Optimum cutting temperature (OCT) compound Sakura Finetek 4583
Plastic embedding mold VWR 15160-215
Aspirator vacuum pump Fisher Scientific 09-960-2
Name Company Catalog Number Comments
Section staining
Neutral red ACROS Organic CAS 553-24-2 Nuclei staining

DOWNLOAD MATERIALS LIST

References

  1. Naclerio, R. M., Pinto, J., Assanasen, P., Baroody, F. M. Observations on the ability of the nose to warm and humidify inspired air. Rhinology. 45, 102-111 (2007).
  2. Bjermer, L. The nose as an air conditioner for the lower airways. Allergy. 54, Suppl 57. 26-30 (1999).
  3. Firestein, S. How the olfactory system makes sense of scents. Nature. 413, 211-218 (2001).
  4. Bryant, B., Silver, W. L. Chemisthesis: The common chemical sense. 2nd, Wiley-Liss. (2000).
  5. Gross, E. A., Swenberg, J. A., Fields, S., Popp, J. A. Comparative morphometry of the nasal cavity in rats and mice. J. Anat. 135, 83-88 (1982).
  6. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325-362 (1987).
  7. Rodolfo-Masera, T. Su l'esquoestizenza di un particulare organo olfacttivo nel setto nasale della cavia e di altri roditori. Arch. Ital. Anat. Embryol. 48, 157-212 (1943).
  8. Levai, O., Strotmann, J. Projection pattern of nerve fibers from the septal organ: DiI-tracing studies with transgenic OMP mice. Histochemistry and Cell biology. 120, 483-492 (2003).
  9. Storan, M. J., Key, B. Septal organ of Gruneberg is part of the olfactory system. J. Comp. Neurol. 494, 834-844 (2006).
  10. Restrepo, D., Arellano, J., Oliva, A. M., Schaefer, M. L., Lin, W. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm. Behav. 46, 247-256 (2004).
  11. Breer, H., Fleischer, J., Strotmann, J. The sense of smell: multiple olfactory subsystems. Cell Mol. Life Sci. 63, 1465-1475 (2006).
  12. Munger, S. D., Leinders-Zufall, T., Zufall, F. Subsystem organization of the mammalian sense of smell. Annu. Rev. Physiol. 71, 115-140 (2009).
  13. Finger, T. E., St Jeor, V. L., Kinnamon, J. C., Silver, W. L. Ultrastructure of substance P- and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J. Comp. Neurol. 294, 293-305 (1990).
  14. Papka, R. E., Matulionis, D. H. Association of substance-P-immunoreactive nerves with the murine olfactory mucosa. Cell Tissue Res. 230, 517-525 (1983).
  15. Baraniuk, J. N., Kim, D. Nasonasal reflexes, the nasal cycle, and sneeze. Curr. Allergy Asthma Rep. 7, 105-111 (2007).
  16. Lin, W., Ogura, T., Margolskee, R. F., Finger, T. E., Restrepo, D. TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J. Neurophysiol. 99, 1451-1460 (2008).
  17. Ogura, T., et al. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J. Neurophysiol. 106, 1274-1287 (2011).
  18. Finger, T. E., et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proceedings of the National Academy of Sciences of the United States of America. 100, 8981-8986 (2003).
  19. Gulbransen, B. D., Clapp, T. R., Finger, T. E., Kinnamon, S. C. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J. Neurophysiol. 99, 2929-2937 (2008).
  20. Zhao, K., Dalton, P., Yang, G. C., Scherer, P. W. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chemical Senses. 31, 107-118 (2006).
  21. Ressler, K. J., Sullivan, S. L., Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell. 73, 597-609 (1993).
  22. Vassar, R., Ngai, J., Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell. 74, 309-318 (1993).
  23. Fulle, H. J., et al. A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proceedings of the National Academy of Sciences of the United States of America. 92, 3571-3575 (1995).
  24. Juilfs, D. M., et al. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America. 94, 3388-3395 (1997).
  25. Lin, W., Arellano, J., Slotnick, B., Restrepo, D. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. The Journal of Neuroscience: The Official journal of the Society for Neuroscience. 24, 3703-3710 (2004).
  26. Ishii, T., Omura, M., Mombaerts, P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J. Neurocyt. 33, 657-669 (2004).
  27. Lee, A. C., Tian, H., Grosmaitre, X., Ma, M. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice. Chemical Senses. 34, 695-703 (2009).
  28. Packard, A., Schnittke, N., Romano, R. A., Sinha, S., Schwob, J. E. DeltaNp63 regulates stem cell dynamics in the mammalian olfactory epithelium. The Journal of Neuroscience: the official journal of the Society for Neuroscience. 31, 8748-8759 (2011).
  29. Matthews, J. B., Mason, G. I. Influence of decalcifying agents on immunoreactivity of formalin-fixed, paraffin-embedded tissue. Histochem J. 16, 771-787 (1984).
  30. Athanasou, N. A., Quinn, J., Heryet, A., Woods, C. G., McGee, J. O. Effect of decalcification agents on immunoreactivity of cellular antigens. J. Clin. Pathol. 40, 874-878 (1987).
  31. Hegg, C. C., Irwin, M., Lucero, M. T. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium. Glia. 57, 634-644 (2009).
  32. Spehr, M., et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. The Journal of Neuroscience: the official journal of the Society for Neuroscience. 26, 1961-1970 (2006).
  33. Ma, M., Chen, W. R., Shepherd, G. M. Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation. J. Neurosci. Methods. 92, 31-40 (1999).
  34. Cygnar, K. D., Stephan, A. B., Zhao, H. Analyzing responses of mouse olfactory sensory neurons using the air-phase electroolfactogram recording. J. Vis. Exp. (37), e1850 (2010).
  35. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. (65), e3564 (2012).
  36. Lin, W., Margolskee, R., Donnert, G., Hell, S. W., Restrepo, D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proceedings of the National Academy of Sciences of the United States of America. 104, 2471-2476 (2007).
  37. Lin, W., Ezekwe, E. A., Zhao, Z., Liman, E. R., Restrepo, D. TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci. 9, 114 (2008).
  38. Ogura, T., Krosnowski, K., Zhang, L., Bekkerman, M., Lin, W. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One. 5, e11924 (2010).
  39. Sathyanesan, A., Feijoo, A. A., Mehta, S. T., Nimarko, A. F., Lin, W. Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia. Frontiers in Cellular Neuroscience. 7, 84 (2013).

Comments

1 Comment

  1. dear David dunston,
    I would appreciate to be able to visualize your dissection method.Thanking you by advance, best regards, Patricia Duchamp-Viret

    Reply
    Posted by: Patricia D.
    February 4, 2014 - 5:31 AM

Post a Question / Comment / Request

You must be signed in to post a comment. Please or create an account.

Video Stats