A منصة القائم على الحنق عالية الإنتاجية التي تتلاءم مع تحديد وتوصيف البوتولينوم السموم العصبية ضوء سلسلة المغيرون


Your institution must subscribe to JoVE's Chemistry section to access this content.

Fill out the form below to receive a free trial or learn more about access:


Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Caglič, D., Bompiani, K. M., Krutein, M. C., Čapek, P., Dickerson, T. J. A High-throughput-compatible FRET-based Platform for Identification and Characterization of Botulinum Neurotoxin Light Chain Modulators. J. Vis. Exp. (82), e50908, doi:10.3791/50908 (2013).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.



Name Company Catalog Number Comments
HEPES Teknova H1021
Tween-20 Fisher Scientific BP337-100
Methanol (HPLC-grade) Sigma-Aldrich 34860
Isopropanol (HPLC-grade) Sigma-Aldrich 650447
96-well Black assay plate Costar 3915
384-well Low-volume black assay plate Greiner 788076
SNAPtide FITC/Dabcyl substrate List Biological Laboratories 521 FRET-based BoNT/A LC substrate
Pin cleaning solution V&P Scientific VP 110
Lint-free blotting paper V&P Scientific VP 540DB
Biomek Seal and Sample Aluminum foil lids Beckman Coulter 538619



  1. Schantz, E. J., Johnson, E. A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 56, 80-99 (1992).
  2. Sloop, R. R., Cole, B. A., Escutin, R. O. Human response to botulinum toxin injection: type B compared with type A. Neurology. 49, 189-194 (1997).
  3. Willis, B., Eubanks, L. M., Dickerson, T. J., Janda, K. D. The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. Angew. Chem. Int. Ed. Engl. 47, 8360-8379 (2008).
  4. Tacket, C. O., Shandera, W. X., Mann, J. M., Hargrett, N. T., Blake, P. A. Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am. J. Med. 76, 794-798 (1984).
  5. Capek, P., et al. Enhancing the Pharmacokinetic Properties of Botulinum Neurotoxin Serotype A Protease Inhibitors Through Rational Design. ACS Chem. Neurosci. 2, 288-293 (2011).
  6. Schmidt, J. J., Bostian, K. A. Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Protein Chem. 14, 703-708 (1995).
  7. Schmidt, J. J., Bostian, K. A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Protein Chem. 16, 19-26 (1997).
  8. Schmidt, J. J., Stafford, R. G., Bostian, K. A. Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1' binding subsite. FEBS Lett. 435, 61-64 (1998).
  9. Schmidt, J. J., Stafford, R. G., Millard, C. B. High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal. Biochem.. 296, 130-137 (2001).
  10. Schmidt, J. J., Stafford, R. G. Fluorigenic substrates for the protease activities of botulinum neurotoxins serotypes A, B, and F. Appl. Environ. Microbiol. 69, 297-303 (2003).
  11. Pellett, S. Progress in cell based assays for botulinum neurotoxin detection. Curr. Top. Microbiol. Immunol. 364, 257-285 (2013).
  12. Boldt, G. E., et al. Synthesis, characterization and development of a high-throughput methodology for the discovery of botulinum neurotoxin a inhibitors. J. Comb. Chem. 8, 513-521 (2006).
  13. Henkel, J. S., et al. Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry. 48, 2522-2528 (2009).
  14. Joshi, S. G. Detection of biologically active botulinum neurotoxin--A in serum using high-throughput FRET-assay. J. Pharmacol. Toxicol. Methods. 65, 8-12 (2012).
  15. Smith, G. R., et al. Reexamining hydroxamate inhibitors of botulinum neurotoxin serotype A: extending towards the beta-exosite. Bioorg. Med. Chem. Lett. 22, 3754-3757 (2012).
  16. Eubanks, L. M., et al. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc. Natl. Acad. Sci. U.S.A. 104, 2602-2607 (2007).
  17. Baldwin, M. R., Bradshaw, M., Johnson, E. A., Barbieri, J. T. The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability. Protein Expr. Purif. 37, 187-195 (2004).
  18. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 4, 67-73 (1999).
  19. Capkova, K., Hixon, M. S., McAllister, L. A., Janda, K. D. Toward the discovery of potent inhibitors of botulinum neurotoxin A: development of a robust LC MS based assay operational from low to subnanomolar enzyme concentrations. Chem. Commun. 3525-3527 (2008).
  20. Pires-Alves, M., Ho, M., Aberle, K. K., Janda, K. D., Wilson, B. A. Tandem fluorescent proteins as enhanced FRET-based substrates for botulinum neurotoxin activity. Toxicon. 53, 392-399 (2009).



    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics