(A)BSL-4実験室での安全上のご注意と操作手順:3.空中生物学

Immunology and Infection

Your institution must subscribe to JoVE's Immunology and Infection section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Cite this Article

Copy Citation | Download Citations

Bohannon, J. K., Janosko, K., Holbrook, M. R., Barr, J., Pusl, D., Bollinger, L., Coe, L., Hensley, L. E., Jahrling, P. B., Wada, J., Kuhn, J. H., Lackemeyer, M. G. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 3. Aerobiology. J. Vis. Exp. (116), e53602, doi:10.3791/53602 (2016).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

Introduction

ウイルスの伝播は、一般的に、直接または物理的な接触によって発生しますが、多くの重要なウイルス性疾患( 例えば 、麻疹、水痘、インフルエンザ)エアロゾルまたは呼吸器飛沫によって送信された病原体によって引き起こされています。このような病原体は、高い致死性( 例えば 、天然痘)に重篤な疾患をより稀なために仕事の損失に関連した広範囲の軽度の疾患( 例えば 、風邪)の範囲の結果を伴う大流行を引き起こす可能性があります。エアロゾルによって、または意図的なエアロゾルリリース(生物兵器)によって自然に広がる高結果の病原体は空中生物学1に特に重要です。人間は咳、および2をくしゃみ、急速に大きな呼吸器飛沫または小粒子核によってこれらの病原体の一部に感染させ、簡単に唾液分泌を介して他の人にこれらの病原体を広げるになることがあります。米国の生物兵器防衛コミュニティでは、高結果の病原体( 例えば 、フィロウイルスまたは他のNIAIDのCategory AC優先病原体とCDCバイオテロエージェントは)関連感染3,4の高い致死率によるエアロゾル研究プログラムの焦点です。空中生物学のフィールド内の重要な科学的進歩が原因エアロゾル機器や高封じ込め施設5,6における技術の進歩に過去10年以内に行われてきました。国立衛生研究所、アレルギーの国立研究所感染症(NIH / NIAID)、フレデリック、MD、USA(IRF-フレデリック)に位置するフォート・デトリックで統合された研究施設での研究は、動物の生物学的安全性を必要とする高結果新興病原体に焦点を当ててレベル4(ABSL-4)封じ込め。 IRF-フレデリックの全体的な使命は、評価し、候補ワクチンと治療薬(医療対策)の開発を促進することです。

IRF-フレデリックで高結果の病原体による研究は、厳しいバイオセーフティおよび動物の管理と使用の要件によって支配されています。これらのrequirementsは、 微生物学的および生物医学研究所 (BMBL)マニュアル7および連邦動物福祉規制のバイオセーフティに概説されているこれらの必要な要件を行うことができる研究の種類を制限し、全体的な試験デザインに影響を与える可能性があります。我々は以前、本誌に記載されているように、ABSL-4環境で行わすべての研究は、特に注意し、専門性の高いトレーニング、堅牢かつ冗長ファシリティインフラ8,9を必要とします

IRF-フレデリックABSL-4スーツの研究室への参入は、正圧封入スーツ8を着用する必要があります。スーツをカプセル化する正圧がABSL-4キャビネット研究室に入るために必要とされません。 ABSL-4キャビネット実験室7で認定クラスIIIの安全キャビネット(BSC)内のリスクグループ4感染性物質を操作する際にスクラブスーツ、ゴムやニトリル手袋、近いつま先の靴を着用することは適切です。

IRF-フレデリックに、エアロゾル装置は、操作組み立て、および2つの密封、ステンレス鋼、気密、負圧クラスIIIのBSC、 図1に維持される。IRF-フレデリック空中生物学コアは、自動化されたエアロゾル管理プラットフォーム(採用しますこれらのBSC、 図2内のエアロゾルの実験を制御し、監視するAAMP)。以前の出版物は、IRF-フレデリックとパススルーポート5を介してスーツの研究室への接続時にクラスIIIのBSCの特定の機能を概説。実験前にクラスIII BSCを準備する手順は、IRFに固有のものです。他の機関で使用される他のクラスIIIのBSCは、IRFでの使用にクラスIII BSCと同様に機能するが、交通、アクセス、またはドッキングのための異なるメカニズムを有することができます。

さらに高結果の病原体が感染残っているかを理解し、エアロゾルの伝送に広がる、安全AErobiological実験は、特定のワークフローの手順に従って、これらのクラスIIIのBSCで行われなければなりません。研究者は、このワークフローは、安全かつ一貫した方法で続いていることを確認するために、慎重かつ徹底的に訓練されています。非ヒト霊長類(NHP)エアロゾル攻撃、いくつかのエアロゾルの特徴付けや偽エアロゾルの実行の前には、エアロゾルの形態での安定性および生存度エージェントの時をテストするために行われています。エアロゾルの特徴付けのプロセスは、実際のエアロゾル攻撃を模倣し、研究者は、エアロゾルの研究に関連する変数を評価します。

ワークフローの別の部分は、各NHPのためのチャート上で物理的な操作、管理または麻酔薬または他の薬剤、または日常的な手順を記録することです。これらの対象のチャートは、手続きの一貫性と標準化を確保するために徹底的に分析されます。被験者は、露出をエアゾールに先立って麻酔します。例の麻酔薬は、チレタミン/ゾラゼパム、ケタミン/アセプロマジン、およびketamiを含みますね。麻酔薬は、呼吸抑制と制御、定常状態の呼吸の促進を最小化することに基づいて選択されます。追加の麻酔用品動物手順の部屋で維持し、空中生物学ABSL-4キャビネット研究室にNHPと転送カートに輸送されます。

ABSL-4スーツの実験室の中で、NHPsをは吸気一回換気量を決定するために2つの方法( すなわち 、ヘッドアウトプレチスモグラフィ、呼吸器、誘導プレチスモグラフィ[RIP])のうちの1つを介して容積脈波を受け、呼吸数は10から12に変更されます。これらの導出されるパラメータには、またはエアロゾル暴露時直前病原体の推定吸入量の正確な計算のために使用されます。ヘッドアウトプレチスモグラフィは、NHP 13を収容する長い、円筒形チャンバを使用しています。動物が円筒である場合に生成される圧力降下は、呼吸気流計により捕捉増幅器に伝え、交流/直接カレンによって処理されますT変換器は、上記の肺のパラメータを導出するために、ソフトウェアに組み込ま。 RIPは、被験者の胸部と腹部11,12の周りにゴムバンドに埋め込まれた誘導コイル状の銅線で作られたセンサーを使用しています。インダクティブ・コンデンサは、センサに磁界を発生させます。呼吸は、磁場が変化し、結果として生じる電圧の変化は、短い波長の超高周波電波を介してコンピュータに受信機の横弾性バンドに送信機から中継されます。専用ソフトウェアは、呼吸数と総胸部変位から一回換気量を決定します。

プレチスモグラフィーにより得られた分時拍出量(MV)は、推定吸入用量(D)の計算に使用されます。エアロゾルを生成し、サンプリングにおいては、エアロゾル濃度(AC)は、媒体(V)の体積biosampler濃度(BC)を乗算によってbiosampler(FL)の流量を乗算した結果で割ることにより計算されます露光時間(T)。簡略化式が順番にAC = BCののx V÷FLのx Tとして表され、NHPsを内の実際のエアロゾル攻撃のために、Dは、MVと露光時間(時間= T)によりACを乗じて算出されます。簡略化式はD = ACのx MVのx Tとして表されています

この記事の目的は、視覚的に二つの観点、ABSL-4スーツの実験室側とABSL-4キャビネット研究室側からNHPsをを使用して、全体のエアロゾル攻撃の手順を実証することです。これらの手順は、上記のいくつかの実践のための自然の中で一般的であるかもしれないが、彼らは、IRF-フレデリック空中生物学コアに固有のものであり、この機関で使用される実際のプラクティスを表します。この記事では、安全にエアロゾル攻撃ではなく、実際のエアロゾル攻撃そのものを実行するために必要な生物学的安全手順に焦点を当てています。これらの手順では、NHPを麻酔に関連したリスクに起因するバイオセーフティの実践を、表示するためにダミーの件名を使用しています。しかしperfoの、プロセス手順は関係なく使用される高結果の病原体の同じであるため、エアロゾル攻撃をrmingする一般的な方法で書かれています。我々は最大の封じ込め条件下で高い結果病原体のエアロゾル研究を行うの厳しさについての科学者の知識と理解を高めることを目指しています。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

このプロトコルは、以下の動物のケアのガイドラインに準拠しています。動物は、評価と実験動物管理インターナショナルの認定協会の認定を受けて施設に収容しました。全ての実験手順は、国立アレルギー感染症研究所、臨床研究の部門、動物実験委員会によって承認され、動物福祉法規制、公衆衛生サービスポリシーを遵守していた、とケアとの使用のためのガイドました実験動物提言。

1.空中生物学:動物バイオセーフティレベル4(ABSL-4)スーツ研究所

  1. 研究室の準備
    1. (8で詳細に概説)ABSL-4スーツ実験室のエントリー手続きを完了します。
    2. すべての機器( 例えば 、プレチスモグラフィー機器、ノートパソコンの機能をテストし、バイオハザードゴミ箱、バイオハザード鋭利物コンテナ、対象監視装置s)は、製造業者のプロトコルに従ってABSL-4スーツの実験室内で発生する空中生物学の手続きに関与。
    3. 転送カートは前クラスIII BSC)に壁を通って輸送カートを接続し、迅速な移送ポート(RTP)、の機能を試験するための生物学的にクリーンであることを確認してください。
    4. ハンドルのみ認定のBSC内の病原体を希釈します。適切な消毒剤が含まれているクラスII BSC内の適切な製剤中の病原体を準備します。運搬カートに濡れた氷の上でバイオハザードのシンボルで標識された気密二次容器内で病原体を運びます。 ABSL-4キャビネット研究室のクラスIII BSC、 図1にRTPを介して病原体を渡します。

2.脈波:アニマルバイオセーフティレベル4(ABSL-4)スーツ研究所

  1. プレチスモグラフィのセットアップとキャリブレーション
    1. プレチスモグラフィ獲得のどの方法を決定(ヘッドアウトプレチスモグラフィーまたは呼吸器インダクタンスプレチスモグラフィ[RIP])を使用し、機器の部品を一緒に接続されます。
    2. 製造業者のプロトコルを用いた実験に先立ってプレチスモグラフを調整します。
  2. 容積脈波の取得
    1. NHPsをを取り扱う際は、交差汚染を防止し、安全な慣行を促進するためにスーツの手袋の上にラテックスまたはニトリル手袋の外部ペアを着用。 NHPsを取り扱いが終了したら、これらの余分な手袋を削除し、室内のバイオハザードのゴミ箱に捨てます。
    2. ヘッドアウトプレチスモグラフィーを使用している場合は、シリンダーの前に新しいゴム/歯科ダムを添付してください。シリンダーの上部を通ってフィットするNHPのヘッド用ダムに小さな穴をカット。装着されると、ダムは、NHPの首の周りにシールを作成します。
    3. RIPを使用している場合は、RIPバンドが適切にNHPの胸と腹部の周りに装着されており、電子接続がtighスナップされていることを確認TLY。
    4. ABSL-4キャビネット研究室の研究者への脈波検査手順から取得した全てのデータを送信します。エアゾール・プロセス中に使用するための互換性のあるプログラムを介してそれぞれの動物のための一回換気量と分のボリュームデータをエクスポートします。

3.非ヒト霊長類輸送および取扱い:動物バイオセーフティレベル4スーツ研究所

  1. NHPの取り扱い
    1. 各NHPのためのチャート上の任意の物理的な操作、行政、または日常的な手順を監視し、記録します。
    2. エアロゾル攻撃が終了すると、輸送コンテナ内NHPを置いて動物保持室に配置ホームケージにNHPを返します。
    3. 生きた動物を取り扱う場合、存在することが2職員を必要とする必須のルールに従ってください。
  2. NHPトランスポート
    1. 麻酔の種類を決定し、麻酔の持続時間(カバー輸送、プレチスモグラフィacquisitイオン、およびエアロゾル攻撃)および投与前に麻酔の対応する用量。完全比較医学のスタッフによって選択されたプロセスに基づいてNHPを麻酔。追加の麻酔が必要な場合は、すべての針、鋭利物、注射器、およびキャップは、動物の手続きの部屋のいずれかに位置するシャープコンテナに廃棄されることを確認します。使用後は、任意の針をリキャップしないでください。
    2. 輸送は、輸送箱の蓋にラッチによって固定されている明確な容器に入れてNHPsを麻酔しました。
    3. モバイルカートにロード輸送容器は、完全に適した研究者が自由に耐性(4月)ドア、 1の呼吸空気ラインを使用して、空気の圧力を通って移動することを可能にします。
    4. NHPには、追加の呼吸空気が輸送容器に供給されないように、輸送時間を最小限に抑えます。

4.空中生物学:ABSL-4内閣研究所

  1. クラスIII BSCのセットアップ
    1. それと同時に比較医学のスタッフによって行われる動物の準備と、クラスIII BSCを準備します。 (;推奨WGで250 Pa以下-1.0水位計(WG)、最小で125 Pa以下-0.5)視覚III BSCは指定された範囲内に維持されるクラスで、その負圧を確認してください。 ( 図1参照)は、任意の潜在的な漏れや亀裂のためのクラスIII BSCを点検。
    2. 物理的にも視覚的にクラスIII BSC合成ゴム手袋や弱点のクラスIII BSCに取り付けられたOリングを点検し、涙、リッピング、または乾燥腐敗。使用直前に損傷を受けたクラスIIIの合成ゴム手袋および/またはOリングを交換してください。この時点で、クラスIII BSCが汚染されていません。
    3. クラスIII BSCが汚染されている間リークが発生した場合は、違反およびアラート施設管理およびバイオセーフティ担当者の位置を特定します。クラスIII BSC統合手袋が破れたり破られている場合は、適切な訓練を受けた技術と相互に従うことで、すぐに損傷した手袋を交換してください最終クラスIII BSC標準作業手順。
    4. 、露光中に小さな涙または違反を含む統合された手袋を変更する最初の二重四級アンモニウム(n-アルキルジメチルベンジルアンモニウムクロライド、n-アルキルジメチルエチルベンジルアンモニウムクロライド)の適切な濃度で過剰に引き裂きまたは違反を噴霧消毒するために。気流の増加を作成するには、この時間の間に過剰な動きをしないでください。
    5. 慎重に、まだクラスIII BSCに接続されている破損した統合手袋を残して外側のOリング(それらの2)を取り外します。統合手袋シールが無傷のまま確保しながら少しポートから離れて破損した統合手袋の袖口を移動します。シールが侵害された場合、アラームは手順が正しく行われなかったことを示す音が鳴ります。第2のOリングは、クラスIII BSCから削除された後に統合グローブカフがポートに接続されたままにしてください。
    6. 古い手袋iの上に新しいクラスIII BSC合成ゴム手袋を置きnは同じ向き。他のクラスIII BSCグローブポートと同様に、ポート上で完全にこの新しい手袋を置きます。
    7. 新しい統合された手袋の上にクラスIII BSCに最も近いOリングを交換してください。隣接する統合グローブポートを使用して、慎重にクラスIII BSC内部の損傷を受けたクラスIII BSC合成ゴム手袋を引き出します。新しいクラスIIIの合成ゴム手袋は、封じ込めを維持するためのバリアとして機能します。その他の損傷を受けたクラスIIIの合成ゴム手袋が除去されると(内側に引っ張られ)、他方の外側のOリングを交換し、作業を続けます。
    8. 特定のクラスIII BSCログブック内の手袋涙/違反に関するすべての詳細を記録します。損傷した統合手袋が削除または封じ込めで違反が発生した場合、危険にさらさ統合手袋/ポートはまだ0.47メートル3 /秒の内側に空気の流れを維持します。この内向きの空気の流れは、このように、クラスIIおよびクラスIIIのBSCとの整合性を維持し、クラスII BSCで使用したのと同じ空気の流れです。
    9. ダンクタンクを点検し、ダンクタンクはダンクタンク、 図1マークされたレベルに消毒剤が充填されていることを確認します。ダンクタンク内の消毒剤の濃度を確認すると、導電率計を用いて、3500μSの最小値です。この導電率は、消毒剤の5%の濃度に相当します。
    10. クラスIII BSCのオートクレーブは、 図1、ので、すべての汚染された廃棄物や機器をオートクレーブ処理することができ、機能と運用であることを確認してください。滅菌プロセスの厳しさを維持することが知られている唯一の機器をオートクレーブ。
    11. 他の( 例えば 、AAMP部品、ラップトップ)空中生物学機器や実験に関与した空気と、真空ライン、 図2の機能をテストします。
    12. ユニットの現在の汚染状況を示すClass III BSC上の看板を置きます。
  2. NHPヘッドのみの露光室のアセンブリおよびシステムのセットアップ
    1. 16リットルNHPヘッドのみの露光茶を組み立て。ステンレス鋼の配信と排気ライン、 図2を挿入し mberプッシュでチャンバーを設定/ AAMPに適切な空気、真空、及び圧力ラインを接続することにより、動的な構成を引っ張ります。クラスIII BSC( 図1)の上に位置密閉されたポートを介してクラスIII BSC内の電源とラップトップコンピュータにAAMPを接続します。
    2. 任意の漏れや亀裂のために組み立てられたNHPヘッドのみの露光室を点検し、チャンバが適切に組み立てられていることを確認してください。
    3. NHPヘッドのみの露光室にエアロゾル発生器と空気力学的粒子サイズの読み取り装置を取り付けます。
    4. AAMPへの空気および真空源を開きます。
    5. ラップトップコンピュータ上のエアロゾルプロトコルソフトウェアを起動します。ソフトウェアのメニューに適切なNHPヘッドのみの露光室、エアロゾル発生器とbiosampler流量、および管理情報を入力します。
    6. エアゾールチャ​​レンジを計算しますプレチスモグラフィー手順中に取得されたデータから時間は、2.2.4ステップ。ヘッドアウトプレチスモグラフィーを使用している場合、エアロゾル曝露の前に投与量を計算します。 RIPを使用している場合は、エアゾール露光時に同時に線量を計算します。
    7. 病原体にエアロゾル発生器を埋めます。
    8. エアゾールソフトウェアを介して、「オン」にエアロゾル発生器をオンにし、10分間チャレンジ物質とNHPヘッドのみの露光室の内側にスプレー。
    9. 、エアロゾル発生器の電源をオフにチャレンジ物質を空にし、クラスIII BSCの内側に位置する生体有害ゴミ袋にチャレンジ物質を廃棄します。
  3. NHPヘッドのみの暴露
    1. NHPヘッドのみの露光室にbiosamplerを取り付け、収集メディアとbiosamplerを記入し、biosamplerに適切な真空ラインを取り付けます。
    2. NHPの麻酔の深さを確認してください。麻酔の深さは、適切とみなされる場合には(
    3. NHP露光ランプに仰臥位でNHPを置きます。
    4. ゆっくりNHPヘッドのみの露光室のヘッドポータルに取り付けられたゴム/歯科ダムを通ってNHPの頭を渡します。ゴム/歯科ダムは、シールがエアロゾル露光中NHPの首に作成されることを確実にします。
    5. NHPのバイタルサインは、視覚的に、ポータブル対象モニタで安定していることを確認します。
    6. ステップ4.2.6から計算エアロゾル攻撃の時間を入力します。あたりや必要な機器識別子各エアロゾルにtinentは、エアゾールソフトウェアに実行し、エアロゾル攻撃を開始します。
    7. 所望の粒子サイズ分布が達成されるように、エアロゾル粒子サイズ分析器で各エアロゾルの実行中に、粒子サイズのデータ​​を確認します。暴露を通して連続的または断続的にこの検証を実行します。
    8. エアロゾル攻撃が完了すると、ヘッドのみの露光室からNHPを削除して、研究室のスタッフに潜在的な汚染を減らすために、適切な消毒剤でNHPの顔/頭を拭き取ってください。
    9. チャンバを通して空気や真空を渡すことで、5分間の残りと遅れ粒子を洗浄エアロゾル室や空気をパージします。この手順は、「きれい」とそれに続くNHPエアロゾル暴露のためのエアロゾル暴露室から残留粒子を除去します。
    10. ABSL-4空中生物学のスーツの研究室の内側に位置して研究者にRTPを通してNHPを戻します。
    11. すべての鋭利物のuを破棄BSCに残っている指定されたシャープコンテナにクラスIII BSC内のsed。シャープコンテナがいっぱい¾である場合には、バイオハザードのゴミ袋に入れます。
    12. ゴミを含む生体有害ゴミ袋の中にエアロゾル発生し、残りのチャレンジ物質のいずれかを空にし、使い捨ての機器、および/または3/4フルシャープコンテナを該当する場合。
    13. 適切に標識されたコレクションチューブにエーロゾルbiosamplerから収集メディアを空にし、濡れた氷の上に置きます。
    14. すべてのスケジュール被験者が挑戦されるまで繰り返して、4.3.13に4.3.1を繰り返します。
    15. エアロゾル投与量の定量化とバック滴定のための研究者にRTPを介してすべてのエアロゾルbiosamplerサンプルを渡します。
    16. クラスIII BSCに接続されているパススルーオートクレーブにエアロゾル攻撃からゴミや機器を置き、( 3)適用可能な滅菌サイクルを選択します。
    17. NHPヘッド-cのみを分解生物学的指標で検証パラホルムアルデヒドガスサイクルで頭専用室およびクラスIII BSCをhamberし、除染。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

クラスIII安全キャビネット(BSC)はABSL-4キャビネットラボ内の負圧の下ABSL-4環境( 図1)を含む密閉されたステンレス製のキャビネットです。材料は、5を含む(一般的にABSL-4またはBSL-4の設定で「ダンクタンク」という。)の下で、キャビネットに取り付けられたステンレス製タンクを介してABSL-4キャビネット実験室で働くスタッフがBSCを導入することができます%デュアル四級アンモニウム(n-アルキルジメチルベンジルアンモニウムクロライド、n-アルキルジメチルエチルベンジルアンモニウムクロリド)消毒液。 BSCはABSL-4スーツの実験室、材料、動物、およびウイルス病原体からキャビネット実験室を隔てる壁に組み込まれているため、また輸送カートと迅速な転送を使用してABSL-4スーツの研究室側からBSC内に移動させることができますポート(RTP)。 BSC内の内容は、身に着けている研究者によって外部から操作することができます合成ゴム手袋の様々なタイプ、特にネオプレン/クロロスルホン化ポリエチレン。内容は、感染性のサンプルを除く、ダンクタンクを経由して二重扉のオートクレーブまたは消毒を介して滅菌後のBSCから削除されます。クラスIII BSCおよびバイオエアロゾル機器( 図2)が正常に機能していることを確認する/確認することにより、我々は、安全かつ適切に運用環境を維持します。クラスIII BSCの適切なメンテナンスと使用は、研究者のための個人的な保護に不可欠です。エアロゾル曝露後、滅菌するエアロゾル攻撃からゴミや機器はクラスIII BSC、 図3に取り付けパススルーオートクレーブに配置されます。厳守を通じてこれらの手続及び慣行に、何の実験室に取得した感染症は、中に記録されていませんIRF-フレデリックでのバイオエアロゾル研究。

2fig1.jpg "/>
1.(5から再生)静的な状態でのキャビネットのIRF-フレデリック。プレゼンテーションでクラスIII安全キャビネットセットアップの概略プレゼンテーションこの図の拡大版をご覧になるにはこちらをクリックしてください。

図2
図2. エアゾール管理プラットフォーム。5からの適用。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図3
図3.インターロックダブルドアオートクレーブは、クラスIII BSCに取り付けられている。研究者が選択されています外側のドアが最終的に開かれたときに、オートクレーブ室内の内容物を確保するために予めプログラムされたオートクレーブサイクルは非感染性です。完全な滅菌サイクルが完了するまで研究者に最も近い位置の扉を開くことができません。オートクレーブ室内の生物学的指標は(5から再生)滅菌工程の後に、エージェントの不活性化を決定するために分析されます。 この図の拡大版をご覧になるにはこちらをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

我々は非常に危険(リスクグループ4)病原体を扱うためのIRF-フレデリックで使用空中生物学手順の概要を説明します。バイオエアロゾルの手順を可視化する1つの目的は、実験室で獲得した感染症を避けるために、このような病原体による実験中にクラスIII BSCを使用した場合、スタッフの安全性を強調することです。クラスIIIのBSCは、病原体が実験室( 図1)内に含まれていることを確実にするために二重のHEPAフィルターに排出する内向き指向の空気の流れを維持します。

クラスIII BSCは、バイオエアロゾル研究中に潜在的な病原体の露出を防止する上で主要な障壁があるように、研究者は、クラスIII BSCの整合性をチェックするために必要とする前に、各エアゾール実験後漏れを統合手袋を装着されています。あらゆる努力は、研究室の研究者への危険性を排除するために取られているが、クラスIII BSCの違反は、合成ゴム手袋が発生することが統合されています。スタッフはで提供されなければなりません両方の教訓と適切なクラスIII BSCの緊急時の対応手順に関する研修ハンズオン。このような手順はABSL-4キャビネット研究室からの避難、クラスIII BSCに封じ込めで違反を確保し、個人用保護具の着用必要があります。私たちは、手続きに必要な運動能力に依存している、過去に様々な厚さの他の手袋を使用しています。これらの手順を実行する際に厚さに関係なく、選択された全ての手袋は、保護としても同様にあります。堅牢なトレーニング、安全プロトコルを厳守し、技術的な管理IRF-フレデリックでクラスIIIのBSCを使用した場合、従業員の安全を確保するのに役立ちます。上記のプロセスが原因で、ワークフローを向上させることに基づいて、新しい方法論や安全性の再評価に変更される場合があります。

ここで提示aerobiological手順は、一般的にBMBL勧告7に従っているが、これらの手順は、IRF-フレデリックに固有のものです。 EACH ABSL-4 / BSL-4施設は、実験操作の正確な方法に影響を与える別の建物の設計仕様を持っています。クラスIII BSCラボを使用するための代替手順および技術は、これらの研究室の設計および動作に部分的に依存します。また、別の国で変化する政府規制はまた、エアロゾル研究手順に影響を与えることができます。それにもかかわらず、ABSL-4エアゾール手順と実験室の研究者の安全をサポートする建物監視システムの一般的な理解は、同様の建物の設計、および高結果の病原体の研究に関与外の協力者を考えている健康管理者に、役立ちます。

外部の協力者とのバイオエアロゾルのプロトコルを設計する際に、十分な時間があっても、基本的なバイオエアロゾルの操作を実行するために割り当てられるべきです。結果を出すためのタイムフレームの期待は、仕事に固有の困難を受け入れることによって調整されなければなりませんABSL-4クラスIII BSC研究所インチ一般的な仮定はABSL-2( 例えば 、2時間)で実行されたバイオエアロゾル実験はABSL-4( 例えば 、4時間)で実行するために時間の2倍を必要とすることです。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Micro-Chem Plus National Chemical Laboratories 255
Ethanol  Fisher  BP2818500
Paraformaldehyde Sigma-Aldrich 441244
Class III BSC Germfree DGB-10
Integrated BSC gloves Piercan 10UY2032-9
Aerosol Management Platform (AeroMP) Biaera Technologies NA
Head-out plethysmography Buxco/Data Sciences International NA
Respriatory inductive plethysmography Data Sciences International NA
Centered flow tangential aerosol generator (CenTAG) CH Technologies NA
Collison nebulizer BGI Inc.  CN25
Autoclave Getinge GEB 2404 AMB-2
Sperian positive-pressure suit Honeywell Safety Products BSL 4-2
Outer suit gloves (latex, Ansell Canners and Handlers) Fisher 19-019-601
Outer suit gloves (nitrile/rubber, MAPA) Fisher 2MYU1
Scrubs Cintas 60975/60976
Socks Cintas 944
Duct tape Pack-N-Tape 51131069695
Towels Cintas 2720
O-rings O-ring warehouse AS568-343
Overshoes Amazon B0034KZE22
Zip lube Amazon B000GKBEJA

DOWNLOAD MATERIALS LIST

References

  1. Alibek, K., Handelman, S. The chilling true story of the largest covert biological weapons program in the world-told from inside by the man who ran it. Random House. New York, NY. (1999).
  2. Roy, C. J., Pitt, L. M. Infectious disease aerobiology: aerosol challenge methods. Biodefense: research methodology and animal models. Swearingen, J. R. Taylor & Francis. Boca Raton, FL. 61-76 (2006).
  3. National Institute of Allergy and Infectious Diseases. NIAID Category A, B, and C Priority Pathogens. National Institutes of Health. Bethesda, MD, USA. Available from: http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/pages/cata.aspx (2014).
  4. National Center for Environmental Health. Bioterrorism agents/diseases by category. Centers for Disease Control and Prevention. Atlanta, GA, USA. Available from: http://emergency.cdc.gov/agent/agentlist-category.asp (2014).
  5. Lackemeyer, M. G., et al. ABSL-4 aerobiology biosafety and technology at the NIH/NIAID integrated research facility at Fort Detrick. Viruses. 6, (1), 137-150 (2014).
  6. Bohannon, J. K., et al. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber. Inhal Toxicol. (2015).
  7. Biosafety in Microbiological and Biomedical Laboratories. Chosewood, L. C., Wilson, D. E., eds, 5th edn, U.S. Dept. of Health and Human Services. Washington, D.C.. Available from: http://www.cdc.gov/biosafety/publications/bmbl5/ (2009).
  8. Janosko, K., et al. Safety Precautions and Operating Procedures in an (A)BSL4 Laboratory: 1. Biosafety level 4 suit laboratory suite entry and exit procedures. J Vis Exp. (2015).
  9. Mazur, S., et al. Safety Precautions and Operating Procedures in an (A)BSL4 Laboratory: 2. General Practices. J Vis Exp. (2015).
  10. Mortola, J. P., Frappell, P. B. On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol. 76, (10-11), 937-944 (1998).
  11. Zhang, Z., et al. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems. Sensors (Basel). 12, (10), 13167-13184 (2012).
  12. Ingram-Ross, J. L., et al. Cardiorespiratory safety evaluation in non-human primates. J Pharmacol Toxicol Meth. 66, (2), 114-124 (2012).
  13. Besch, T. K., Ruble, D. L., Gibbs, P. H., Pitt, M. L. Steady-state minute volume determination by body-only plethysmography in juvenile rhesus monkeys. Lab Anim Sci. 46, (5), 539-544 (1996).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics