Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Biology

Indacenodithienothiophene-Based Ternary Organic Solar Cells: Concept, Devices and Optoelectronic Analysis

Nicola Gasparini1, Amaranda García-Rodríguez2, Athanasios Katsouras3, Apostolos Avgeropoulos3, Georgia Pagona4,5, Vasilis G. Gregoriou4,5, Christos L. Chochos3,4, Sybille Allard2, Ulrich Scherf2, Christoph J. Brabec1,6, Tayebeh Ameri1
1Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, 2Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, 3Department of Materials Science Engineering, University of Ioannina, 4Advent Technologies SA, 5National Hellenic Research Foundation (NHRF), 6Bavarian Center for Applied Energy Research (ZAE Bayern)

Abstract

We report on a novel ternary bulk-heterojunction solar cell by implementing a novel conjugated polymer (ADV-2) containing alternating pyridyl[2,1,3]thiadiazole (PT) between two different donor fragments, dithienosilole (DTS) and indacenodithienothiophene (IDTT), into a host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). A clear absorption contribution in the near infrared (NIR) region leads to a power conversion efficiency (PCE) exceeding 4.6% in ternary device processed by doctor blading in air, fully avoiding any thermal treatment. Current-voltage (J-V) characteristics, external quantum efficiency (EQE) spectrum, charge extraction (CE) as well as photo-induced absorption (PIA) spectroscopy reveal the higher charge carrier generation in the ternary devices compared to the reference binary cells. Despite an enhancement of about 20% in the short circuit current density (Jsc), the lower fill factor (FF) achieved in PIDTTQ:ADV-2:PC71BM ternary system limits the solar cell performance. With the complementary use of photoinduced charge carrier extraction by linearly increasing voltage (photo-CELIV) and transient photovoltage (TPV) measurements, we found that the ternary cells suffer from a lower mobility-lifetime (µτ) product, adversely impacting the FF. However, the significant improvement of light harvesting in the NIR region, compensating the transport losses, results in an overall power conversion efficiency enhancement of ~7% for ternary blends as compared to the PIDTTQ: PC71BM devices.

Video Coming Soon

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter